Translational Photoacoustic Microscopy

  • Yong Zhou
  • Lihong V. WangEmail author
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)


Photoacoustic microscopy (PAM), combining the advantages of optical excitation and of acoustic detection, has been widely used for both structural and functional imaging with scalable resolution and penetration in biological tissues. In this chapter, we provide a detailed discussion on PAM in translational studies. We first summarize the principles and major implementations of this technology. Then we introduce the state of the art in translational PAM, including studies on burns, peripheral arterial occlusive disease, eye disease, diabetic microvascular complications, pain, melanoma, gastrointestinal tract disease, and the brain. Finally, we discuss the major challenges and future directions of translational PAM.


Complex Regional Pain Syndrome Ultrasonic Transducer Peripheral Arterial Occlusive Disease Photoacoustic Signal Stellate Ganglion Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Profs. James Ballard and Sandra Matteucci for manuscript editing. This work was supported in part by National Institutes of Health grants DP1 EB016986 (NIH Director’s Pioneer Award), R01 CA186567 (NIH Director’s Transformative Research Award), U01 NS090579 (BRAIN Initiative), R01 EB016963, R01 EB010049, R01 CA157277, and R01 CA159959 as well as National Science Foundation grant 1255930. L.W. has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.


  1. 1.
    L.V. Wang, H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, 2007)Google Scholar
  2. 2.
    A.T. Eggebrecht, S.L. Ferradal, A. Robichaux-Viehoever, M.S. Hassanpour, H. Dehghani, A.Z. Snyder, T. Hershey, J.P. Culver, Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photonics 8, 448–454 (2014)CrossRefGoogle Scholar
  3. 3.
    L.H.V. Wang, S. Hu, Photoacoustic tomography in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012)CrossRefGoogle Scholar
  4. 4.
    L.V. Wang, Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3, 503–509 (2009)CrossRefGoogle Scholar
  5. 5.
    H.F. Zhang, K. Maslov, G. Stoica, L.H.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006)CrossRefGoogle Scholar
  6. 6.
    X.D. Wang, Y.J. Pang, G. Ku, X.Y. Xie, G. Stoica, L.H.V. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Hu, L.H.V. Wang, Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level. Biophys. J. 105, 841–847 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Zhang, Y.J. Cheng, J.J. Chen, S. Wickline, L.H.V. Wang, Label-free photoacoustic microscopy of myocardial sheet architecture. J. Biomed. Opt. 17 (2012)Google Scholar
  9. 9.
    D.K. Yao, K. Maslov, K.K. Shung, Q.F. Zhou, L.V. Wang, In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35, 4139–4141 (2010)CrossRefGoogle Scholar
  10. 10.
    Z. Xu, C.H. Li, L.V. Wang, Photoacoustic tomography of water in phantoms and tissue. J. Biomed. Opt. 15 (2010)Google Scholar
  11. 11.
    H.W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L.H.V. Wang, M. Sturek, R. Lucht, J.X. Cheng, Label-free bond-selective imaging by listening to vibrationally excited molecules. Phys. Rev. Lett. 106 (2011)Google Scholar
  12. 12.
    C. Zhang, Y.S. Zhang, D.K. Yao, Y.N. Xia, L.H.V. Wang, Label-free photoacoustic microscopy of cytochromes. J. Biomed. Opt. 18 (2013)Google Scholar
  13. 13.
    Y. Zhou, C. Zhang, D.K. Yao, L.H.V. Wang, Photoacoustic microscopy of bilirubin in tissue phantoms. J. Biomed. Opt. 17 (2012)Google Scholar
  14. 14.
    Y. Wang, K. Maslov, Y. Zhang, S. Hu, L.M. Yang, Y.N. Xia, J.A. Liu, L.H.V. Wang, Fiber-laser-based photoacoustic microscopy and melanoma cell detection. J. Biomed. Opt. 16 (2011)Google Scholar
  15. 15.
    Y. Zhou, G. Li, L. Zhu, C. Li, L.A. Cornelius, L.V. Wang, Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. J. Biophotonics. 1 (2015)Google Scholar
  16. 16.
    M. Tang, Y. Zhou, R. Zhang, L.V. Wang, Noninvasive photoacoustic microscopy of methemoglobin in vivo. J. Biomed. Opt. 20, 036007 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Zhang, K. Maslov, L.H.V. Wang, Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35, 3195–3197 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Danielli, K. Maslov, A. Garcia-Uribe, A.M. Winkler, C.Y. Li, L.D. Wang, Y. Chen, G.W. Dorn, L.V. Wang, Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19 (2014)Google Scholar
  19. 19.
    S. Hu, K. Maslov, L.V. Wang, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36, 1134–1136 (2011)CrossRefGoogle Scholar
  20. 20.
    R.A. Kruger, C.M. Kuzmiak, R.B. Lam, D.R. Reinecke, S.R. Del Rio, D. Steed, Dedicated 3D photoacoustic breast imaging. Med. Phys. 40 (2013)Google Scholar
  21. 21.
    C.P. Favazza, O. Jassim, L.A. Cornelius, L.H.V. Wang, In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J. Biomed. Opt. 16 (2011)Google Scholar
  22. 22.
    H.F. Zhang, K. Maslov, G. Stoica, L.H.V. Wang, Imaging acute thermal burns by photoacoustic microscopy. J. Biomed. Opt. 11 (2006)Google Scholar
  23. 23.
    W. Song, Q. Wei, L. Feng, V. Sarthy, S.L. Jiao, X.R. Liu, H.F. Zhang, Multimodal photoacoustic ophthalmoscopy in mouse. J. Biophotonics 6, 505–512 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zhou, W. Xing, K.I. Maslov, L.A. Cornelius, L.V. Wang, Handheld photoacoustic microscopy to detect melanoma depth in vivo. Opt. Lett. 39, 4731–4734 (2014)CrossRefGoogle Scholar
  25. 25.
    J.M. Yang, C. Favazza, R.M. Chen, J.J. Yao, X. Cai, K. Maslov, Q.F. Zhou, K.K. Shung, L.H.V. Wang, Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297 (2012)Google Scholar
  26. 26.
    K. Maslov, H.F. Zhang, S. Hu, L.V. Wang, Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929–931 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Maslov, G. Stoica, L.H.V. Wang, In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett. 30, 625–627 (2005)CrossRefGoogle Scholar
  28. 28.
    K. Maslov, L.V. Wang, Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. J. Biomed. Opt. 13 (2008)Google Scholar
  29. 29.
    C. Zhang, Y. Zhou, C.Y. Li, L.H.V. Wang, Slow-sound photoacoustic microscopy. Appl. Phys. Lett. 102 (2013)Google Scholar
  30. 30.
    C. Zhang, K. Maslov, J.J. Yao, L.H.V. Wang, In vivo photoacoustic microscopy with 7.6 μm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt. 17 (2012)Google Scholar
  31. 31.
    E.W. Stein, K. Maslov, L.H.V. Wang, Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J. Appl. Phys. 105 (2009)Google Scholar
  32. 32.
    J.Y. Liang, Y. Zhou, A.W. Winkler, L.D. Wang, K.I. Maslov, C.Y. Li, L.H.V. Wang, Random-access optical-resolution photoacoustic microscopy using a digital micromirror device. Opt. Lett. 38, 2683–2686 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Zhou, J.Y. Liang, K.I. Maslov, L.H.V. Wang, Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. Opt. Lett. 38, 3882–3885 (2013)CrossRefGoogle Scholar
  34. 34.
    J.Y. Liang, Y. Zhou, K.I. Maslov, L.H.V. Wang, Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device. J. Biomed. Opt. 18 (2013)Google Scholar
  35. 35.
    J.J. Yao, L.H.V. Wang, Transverse flow imaging based on photoacoustic Doppler bandwidth broadening. J. Biomed. Opt. 15 (2010)Google Scholar
  36. 36.
    J.J. Yao, K.I. Maslov, Y.F. Shi, L.A. Taber, L.H.V. Wang, In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35, 1419–1421 (2010)CrossRefGoogle Scholar
  37. 37.
    Y. Zhou, J.J. Yao, L.H.V. Wang, Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth. Opt. Lett. 38, 2592–2595 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Liu, C. Zhang, L.H.V. Wang, Effects of light scattering on optical-resolution photoacoustic microscopy. J. Biomed. Opt. 17 (2012)Google Scholar
  39. 39.
    G. Ku, L.H.V. Wang, Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett. 30, 507–509 (2005)CrossRefGoogle Scholar
  40. 40.
    T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, T. Iwai, Real-time photoacoustic imaging system for burn diagnosis. J. Biomed. Opt. 19 (2014)Google Scholar
  41. 41.
    K. Aizawa, S. Sato, D. Saitoh, H. Ashida, M. Obara, Photoacoustic monitoring of burn healing process in rats. J. Biomed. Opt. 13 (2008)Google Scholar
  42. 42.
    R. Kragelj, T. Jarm, T. Erjavec, M. Presern-Strukelj, D. Miklavcic, Parameters of postocclusive reactive hyperemia measured by near infrared spectroscopy in patients with peripheral vascular disease and in healthy volunteers. Ann. Biomed. Eng. 29, 311–320 (2001)CrossRefGoogle Scholar
  43. 43.
    G. Addor, A. Delachaux, B. Dischl, D. Hayoz, L. Liaudet, B. Waeber, F. Feihl, A comparative study of reactive hyperemia in human forearm skin and muscle. Physiol. Res. 57, 685–692 (2008)Google Scholar
  44. 44.
    C.P. Favazza, L.A. Cornelius, L.H.V. Wang, In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin. J. Biomed. Opt. 16 (2011)Google Scholar
  45. 45.
    F.F.M. de Mul, F. Morales, A.J. Smit, R. Graaff, A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring. IEEE T. Bio-Med. Eng. 52, 184–190 (2005)CrossRefGoogle Scholar
  46. 46.
    D. Lepore, F. Molle, M.M. Pagliara, A. Baldascino, C. Angora, M. Sammartino, G.E. Quinn, Atlas of fluorescein angiographic findings in eyes undergoing laser for retinopathy of prematurity. Ophthalmology 118, 168–175 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Makita, F. Jaillon, M. Yamanari, M. Miura, Y. Yasuno, Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. Opt. Express 19, 1271–1283 (2011)CrossRefGoogle Scholar
  48. 48.
    A. de la Zerda, Y.M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B.T. Khuri-Yakub, M.S. Blumenkranz, D.M. Moshfeghi, S.S. Gambhir, Photoacoustic ocular imaging. Opt. Lett. 35, 270–272 (2010)CrossRefGoogle Scholar
  49. 49.
    S.L. Jiao, M.S. Jiang, J.M. Hu, A. Fawzi, Q.F. Zhou, K.K. Shung, C.A. Puliafito, H.F. Zhang, Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18, 3967–3972 (2010)CrossRefGoogle Scholar
  50. 50.
    S. Hu, B. Rao, K. Maslov, L.V. Wang, Label-free photoacoustic ophthalmic angiography. Opt. Lett. 35, 1–3 (2010)CrossRefGoogle Scholar
  51. 51.
    N. Wu, S.Q. Ye, Q.S. Ren, C.H. Li, High-resolution dual-modality photoacoustic ocular imaging. Opt. Lett. 39, 2451–2454 (2014)CrossRefGoogle Scholar
  52. 52.
    W. Song, Q. Wei, T. Liu, D. Kuai, J.M. Burke, S.L. Jiao, H.F. Zhang, Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 17 (2012)Google Scholar
  53. 53.
    Y.K. Shi, F.B. Hu, The global implications of diabetes and cancer. Lancet 383, 1947–1948 (2014)CrossRefGoogle Scholar
  54. 54.
    N. Sarwar, P. Gao, S.R.K. Seshasai, R. Gobin, S. Kaptoge, E. Di Angelantonio, E. Ingelsson, D.A. Lawlor, E. Selvin, M. Stampfer, C.D.A. Stehouwer, S. Lewington, L. Pennells, A. Thompson, N. Sattar, I.R. White, K.K. Ray, J. Danesh, E.R.F. Collabora, Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010)CrossRefGoogle Scholar
  55. 55.
    P.T. O’Gara, F.G. Kushner, D.D. Ascheim, D.E. Casey, M.K. Chung, J.A. de Lemos, S.M. Ettinger, J.C. Fang, F.M. Fesmire, B.A. Franklin, C.B. Granger, H.M. Krumholz, J.A. Linderbaum, D.A. Morrow, L.K. Newby, J.P. Ornato, N. Ou, M.J. Radford, J.E. Tamis-Holland, C.L. Tommaso, C.M. Tracy, Y.J. Woo, D.X. Zhao, W.C. Members, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction a report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation. 127, E362 (2013)Google Scholar
  56. 56.
    A. Krumholz, L.D. Wang, J.J. Yao, L.H.V. Wang, Functional photoacoustic microscopy of diabetic vasculature. J. Biomed. Opt. 17 (2012)Google Scholar
  57. 57.
    L. Parkitny, J.H. McAuley, F. Di Pietro, T.R. Stanton, N.E. O’Connell, J. Marinus, J.J. van Hilten, G.L. Moseley, Inflammation in complex regional pain syndrome a systematic review and meta-analysis. Neurology. 80, 106–117 (2013)CrossRefGoogle Scholar
  58. 58.
    M. Schurmann, J. Zaspel, G. Gradl, A. Wipfel, F. Christ, Assessment of the peripheral microcirculation using computer-assisted venous congestion plethysmography in post-traumatic complex regional pain syndrome type I. J. Vasc. Res. 38, 453–461 (2001)CrossRefGoogle Scholar
  59. 59.
    Y. Zhou, X.B. Yi, W.X. Xing, S. Hu, K.I. Maslov, L.H.V. Wang, Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. J. Biomed. Opt. 19 (2014)Google Scholar
  60. 60.
    Y. Zhou, J. Yao, K.I. Maslov, L.V. Wang, Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo. J. Biomed. Opt. 19, 37001 (2014)CrossRefGoogle Scholar
  61. 61.
    A.F. Jerant, J.T. Johnson, C.D. Sheridan, T.J. Caffrey, Early detection and treatment of skin cancer. American family physician. 62, 357–368, 375–376, 381–382 (2000)Google Scholar
  62. 62.
    K.M. Rubin, Melanoma staging: a review of the revised american joint committee on cancer guidelines. J. Dermatol. Nurses Assoc. 2, 6 (2010)Google Scholar
  63. 63.
    J.M. Yang, C.Y. Li, R.M. Chen, Q.F. Zhou, K.K. Shung, L.V. Wang, Catheter-based photoacoustic endoscope. J. Biomed. Opt. 19 (2014)Google Scholar
  64. 64.
    C.Y. Li, J.M. Yang, R.M. Chen, C.H. Yeh, L.R. Zhu, K. Maslov, Q.F. Zhou, K.K. Shung, L.H.V. Wang, Urogenital photoacoustic endoscope. Opt. Lett. 39, 1473–1476 (2014)CrossRefGoogle Scholar
  65. 65.
    J.M. Yang, R.M. Chen, C. Favazza, J.J. Yao, C.Y. Li, Z.L. Hu, Q.F. Zhou, K.K. Shung, L.V. Wang, A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt. Express 20, 23944–23953 (2012)CrossRefGoogle Scholar
  66. 66.
    M.E. Raichle, A paradigm shift in functional brain imaging. J. Neurosci. 29, 12729–12734 (2009)CrossRefGoogle Scholar
  67. 67.
    J.J. Yao, C.H. Huang, L.D. Wang, J.M. Yang, L. Gao, K.I. Maslov, J. Zou, L.H.V. Wang, Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. J. Biomed. Opt. 17 (2012)Google Scholar
  68. 68.
    J.J. Yao, L.D. Wang, J.M. Yang, K.I. Maslov, T.W. Wong, L. Li, C.H. Huang, J. Zou, L.H.V. Wang, High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods (2015)Google Scholar
  69. 69.
    J.J. Yao, K.I. Maslov, Y. Zhang, Y.N. Xia, L.V. Wang, Label-free oxygen-metabolic photoacoustic microscopy in vivo. J. Biomed. Opt. 16 (2011)Google Scholar
  70. 70.
    L.D. Wang, J. Xia, J.J. Yao, K.I. Maslov, L.H.V. Wang, Ultrasonically encoded photoacoustic flowgraphy in biological tissue. Phys. Rev. Lett. 111 (2013)Google Scholar
  71. 71.
    Y. Jiang, A. Forbrich, T. Harrison, R.J. Zemp, Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study. J. Biomed. Opt. 17 (2012)Google Scholar
  72. 72.
    E.V. Petrova, A.A. Oraevsky, S.A. Ermilov, Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring. Appl. Phys. Lett. 105 (2014)Google Scholar
  73. 73.
    H.X. Ke, S. Tai, L.H.V. Wang, Photoacoustic thermography of tissue. J. Biomed. Opt. 19 (2014)Google Scholar
  74. 74.
    M. Pramanik, L.V. Wang, Thermoacoustic and photoacoustic sensing of temperature. J. Biomed. Opt. 14 (2009)Google Scholar
  75. 75.
    L. Gao, L.D. Wang, C.Y. Li, Y. Liu, H.X. Ke, C. Zhang, L.H.V. Wang, Single-cell photoacoustic thermometry. J. Biomed. Opt. 18 (2013)Google Scholar
  76. 76.
    L. Gao, C. Zhang, C.Y. Li, L.H.V. Wang, Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry. Appl. Phys. Lett. 102 (2013)Google Scholar
  77. 77.
    J.J. Yao, H.X. Ke, S. Tai, Y. Zhou, L.H.V. Wang, Absolute photoacoustic thermometry in deep tissue. Opt. Lett. 38, 5228–5231 (2013)CrossRefGoogle Scholar
  78. 78.
    P.F. Hai, J.J. Yao, K.I. Maslov, Y. Zhou, L.H.V. Wang, Near-infrared optical-resolution photoacoustic microscopy. Opt. Lett. 39, 5192–5195 (2014)CrossRefGoogle Scholar
  79. 79.
    X.A. Xu, H.L. Liu, L.V. Wang, Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photonics 5, 154–157 (2011)CrossRefGoogle Scholar
  80. 80.
    T. Chaigne, O. Katz, A.C. Boccara, M. Fink, E. Bossy, S. Gigan, Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics 8, 59–65 (2014)Google Scholar
  81. 81.
    A.P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012)CrossRefGoogle Scholar
  82. 82.
    Y. Liu, P.X. Lai, C. Ma, X. Xu, A.A. Grabar, L.V. Wang, Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun. 6 (2015)Google Scholar
  83. 83.
    P.X. Lai, L.D. Wang, J.W. Tay, L.H.V. Wang, Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 9, 126–132 (2015)CrossRefGoogle Scholar
  84. 84.
    C. Ma, X. Xu, Y. Liu, L.V. Wang, Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photon. 8, 931–936 (2014)CrossRefGoogle Scholar
  85. 85.
    E.I. Galanzha, E.V. Shashkov, P.M. Spring, J.Y. Suen, V.P. Zharov, In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69, 7926–7934 (2009)CrossRefGoogle Scholar
  86. 86.
    E.I. Galanzha, E.V. Shashkov, T. Kelly, J.W. Kim, L.L. Yang, V.P. Zharov, In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Optical Imaging Laboratory, Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations