Next Frontier in Optical Imaging Techniques for Laparoscopic Surgery: An Industry Perspective

  • Ignatius J. RasiahEmail author
  • Margaret Groves
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)


Laparoscopic surgery in clinical practice has made great strides in extending novel techniques and technology in treating numerous disease conditions in recent years. It has also improved the patient’s outcome while lowering the overall cost of healthcare due mainly to the shorter duration of hospitalization. Despite the progress, the ability of a surgeon to view diseased tissue, critical structures such as blood vessels has been limited to the live video images that the surgeon views during surgery. This study looks first into the imaging needs of surgeons during laparoscopic surgery for common procedures; it then reviews the current state of the art for each imaging modality in relation to the needs of the surgeons as identified. The review concludes with a summary of the potential for some of these optical imaging methods to become mainstream techniques in laparoscopic imaging.


Sentinel Lymph Node Methylene Blue Laparoscopic Surgery Surface Enhance Raman Spectroscopy Partial Nephrectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Medtronic for the financial support in conducting the review for this chapter as well as Ms. Emily Duran for help in editing the final text.


  1. 1.
    R.M. Schols, N.D. Bouvy, R.M. van Dam, L.P.S. Stassen, Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg. Endosc. 27, 1851–1859 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Monici, Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005)CrossRefGoogle Scholar
  3. 3.
    B.M. Stiles, P.S. Adusumilli, A. Bhargava, Y. Fong, Fluorescent cholangiography in a mouse model: an innovative method for improved laparoscopic identification of the biliary anatomy. Surg. Endosc. 20, 1291–1295 (2006)CrossRefGoogle Scholar
  4. 4.
    J.T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V.V. Tuchin, M. Venermo, P. Välisuo, A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012, 1–26 (2012)CrossRefGoogle Scholar
  5. 5.
    N. Kosaka, M. Mitsunaga, M.R. Longmire, P.L. Choyke, H. Kobayashi, Near infrared fluorescence-guided real time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int. J. Cancer 129(7), 1671–1677 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Gray, E.M. Kim, V.E. Cotero, A. Bajaj, V.P. Staudinger, C.A. Tan Hehir, S. Yazdanfar, Dual-mode laparoscopic fluorescence image-guided surgery using a single camera. Biomed. Opt. Express 3(8), 1880–1890 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Tagaya, Y. Sugamata, N. Makino, K. Saito, T. Okuyama, S. Koketsu, M. Oya, Fluorescence cholangiography in laparoscopic cholecystectomy: experience in Japan. Front. Gastrointest. Res. 31, 73–79 (2013)CrossRefGoogle Scholar
  8. 8.
    R.M. Schols, N.D. Bouvy, A.A.M. Masclee, R.M. van Dam, C.H.C. Dejong, L.P.S. Stassen, Fluorescence cholangiography during laparoscopic cholecystectomy: a feasibility study on early biliary tract delineation. Surg. Endosc. 27, 1530–1536 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Ishizawa, Y. Bandai, M. Ijichi, J. Kaneko, K. Hasegawa, N. Kokudo, Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br. J. Surg. 97(9), 1369–1377 (2010)CrossRefGoogle Scholar
  10. 10.
    R.M. Schols, N.D. Bouvy, R.M. van Dam, A.A.M. Masclee, C.H.C. Dejong, L.P.S. Stassen, Combined vascular and biliary fluorescence imaging in laparoscopic cholecystectomy. Surg. Endosc. 27(12), 4511–4517 (2013)CrossRefGoogle Scholar
  11. 11.
    F.P.R. Verbeek, B. Schaafsma, Q. Tummers, J. van der Vorst, W.J. van der Made, C.I. Baeten, B.A. Bonsing, J.V. Frangioni, C.J. van de Velde, A. Vahrmeijer, R. Swijnenburg, Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg. Endosc. 28(4), 1076–1082 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Bouvet, R.M. Hoffman, Laparoscopic fluorescence imaging for identification and resection of pancreatic and hepatobiliary cancer. Front. Gastrointest. Res. 31, 92–99 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Shirakawa, S. Tsuchida, M. Awazu, Y. Ueda, D. Lee, Y. Harada, T. Wakahara, H. Ashitani, Y. Hasegawa, A. Toyokawa, Intraoperative biliary fluorescence imaging in laparoscopic fenestration for giant liver cyst. 14th World Congress of Endoscopic Surgery and 22nd International Congress of the EAES 453 (2015)Google Scholar
  14. 14.
    M. Secil, C. Elibol, G. Aslan, A. Kefi, F. Obuz, B. Tuna, K. Yorukoglu, Role of intraoperative US in the decision for radical or partial nephrectomy. Radiology 258(1), 283–290 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Tobis, J.K. Knopf, C.R. Silvers, J. Yao, A. Cardin, R.W. Wood, J.E. Reeder, E. Erturk, R. Madeb, J. Marshall, E.A. Singer, H. Rashid, G. Wu, E. Messing, D. Golijanin, Near Infrared fluorescence imaging after intravenous indocyanine green: initial clinical experience with open partial nephrectomy for renal cortical tumors. Urology 79(4), 958–964 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Tobis, J. Knopf, C. Silvers, J. Yao, H. Rashid, G. Wu, D. Golijaninet, Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J. Urol. 186(1), 47–52 (2011)CrossRefGoogle Scholar
  17. 17.
    H.G. van der Poel, T. Buckle, O.R. Brouwer, R.A. Valdes Olmos, F.W.B. van Leeuwen, Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol. 60(4), 826–833 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Abboudi, K. Ahmed, J. Royle, M.S. Khan, P. Dasgupta, J. N’Dow, Ureteric injury: a challenging condition to diagnose and manage. Nat. Rev. Urol. 10(2), 108–115 (2013)CrossRefGoogle Scholar
  19. 19.
    N.C. Palaniappa, D.A. Telem, N.E. Ranasinghe, C.M. Divino, Incidence of iatrogenic ureteral injury after laparoscopic colectomy. Arch. Surg. 147(3), 267–271 (2012)CrossRefGoogle Scholar
  20. 20.
    R.M. Schols, T.M. Lodewick, N.D. Bouvy, D.A. van Dam, W.J. Meijerink, G.M. van Dam, C.H. Dejong, L.P. Stassen, Near-infrared fluorescence laparoscopy of the cystic duct and artery in pigs: performance of a preclinical dye. J. Laparoendosc. Adv. Surg. Tech. 24(5), 318–322 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Demco, Laparoscopic spectral analysis of endometriosis. J. Am. Assoc. Gynecol. Laparosc. 11(2), 219–222 (2004)CrossRefGoogle Scholar
  22. 22.
    O. Buchweitz, A. Staebler, J. Tio, L. Kiesel, Detection of peritoneal endometriotic lesions by autofluorescence laparoscopy. Am. J. Obstet. Gynecol. 195(4), 949–954 (2006)CrossRefGoogle Scholar
  23. 23.
    H.J.M. Handgraaf, F.P.R. Verbeek, Q.R.J.G. Tummers, L.S.F. Boogerd, C.J.H. van de Velde, A.L. Vahrmeijer, K.N. Gaarenstroom, Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art. Gynecol. Oncol. YGYNO-975602 (2014)Google Scholar
  24. 24.
    L.M. Crane, G. Themelis, H.J. Arts, K.T. Buddingh, A.H. Brouwers, V. Ntziachristos, G.M. van Dam, A.G. van der Zee, Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol. Oncol. 120(2), 291–295 (2010)CrossRefGoogle Scholar
  25. 25.
    M.V. Marshall, D. Draney, E.M. Sevick-Muraca, D.M. Olive, Single-dose intravenous toxicity study of IRDye 800CW in sprague-dawley rats. Mol. Imaging Biol. 12(6), 583–594 (2010)CrossRefGoogle Scholar
  26. 26.
    F.P. Verbeek, J.R. van der Vorst, B.E. Schaafsma, R.J. Swijnenburg, K.N. Gaarenstroom, H.W. Elzevier, C.J. van de Velde, J.V. Frangioni, A.L. Vahrmeijer, Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J. Urol. 190(2), 574–579 (2013)CrossRefGoogle Scholar
  27. 27.
    P. Collinet, F. Sabban, M. Cosson, M.O. Farine, R. Villet, D. Vinatier, S. Mordon, Laparoscopic photodynamic diagnosis of ovarian cancer peritoneal micro metastasis: an experimental study. Photochem. Photobiol. 83(3), 647–651 (2007)CrossRefGoogle Scholar
  28. 28.
    N. Kosakaa, M. Bernardo, M. Mitsunaga, P.L. Choyke, H. Kobayashi, MR and optical imaging of early micrometastases in lymph nodes: triple labeling with nano-sized agents yielding distinct signals. Contrast Media Mol. Imaging 7, 247–253 (2012)CrossRefGoogle Scholar
  29. 29.
    M.D. Jafari, K.H. Lee, W.J. Halabi, S.D. Mills, J.C. Carmichael, M.J. Stamos, A. Pigazzi, The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc. 27(8), 3003–3008 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Kondo, Y. Murayama, H. Konishi, R. Morimura, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, T. Kubota, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, C. Sakakura, K. Takahashi, Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid. Int. J. Oncol. 45(1), 41–46 (2014)Google Scholar
  31. 31.
    K. Kishi, Y. Fujiwara, M. Yano, M. Inoue, I. Miyashiro, M. Motoori, T. Shingai, K. Gotoh, H. Takahashi, S. Noura, T. Yamada, M. Ohue, H. Ohigashi, O. Ishikawa, Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J. Surg. Oncol. 106(3), 294–298 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Menen, S. Kauschal, C. Snyder, R.M. Hoffman, M. Bouvet, Fluorescence laparoscopy improves metastatic detection in both early and advanced colon cancer. AACR 103rd Annual Meeting (2012)Google Scholar
  33. 33.
    F. Bazant-Hegemark, N. Stone, Towards automated classification of clinical optical coherence tomography data of dense tissues. Lasers Med. Sci. 24(4), 627–638 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Hsu, M. Gupta, L.-M. Su, J.C. Liao, C. Joseph, Intraoperative optical imaging and tissue interrogation during urologic surgery. Curr. Opin. Urol. 24(1), 66–74 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Lee, C. Zhou, D.W. Cohen, A.E. Mondelblatt, Y. Wang, A.D. Aguirre, D. Shen, Y. Sheikine, J.G. Fujimotoa, J.L. Connolly, Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues. J. Urol. 187(2), 691–699 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Rais-Bahrami, A.W. Levinson, N.M. Fried, G.A. Lagoda, A. Hristov, Y. Chuang, A.L. Burnett, L.M. Su, Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy. J. Urol. 72(1), 198–204 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Aron, J.H. Kaouk, N.J. Hegarty, J.R. Jr. Colombo, G.P. Haber, B.I. Chung, M. Zhou, I.S. Gill, Preliminary experience with the Niris(TM) optical coherence tomography system during laparoscopic and robotic prostatectomy. J. Endourol. 21(8), 814–818 (2007)Google Scholar
  38. 38.
    American Cancer Society, (2014),
  39. 39.
    L.P. Hariri, G.T. Bonnema, K. Schmidt, A.M. Winkler, V. Korde, K.D. Hatch, J.R. Davis, M.A. Brewer, J.K. Barton, Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol. Oncol. 114(2), 188–194 (2009)CrossRefGoogle Scholar
  40. 40.
    Expert Group on Commissioning NHS Infertility Provision, Regulated Fertility Services: A Commissioning Aid (Department of Health, London, 2009)Google Scholar
  41. 41.
    M. Kirillin, O. Panteleeva, D. Eliseeva, O. Kachalina, E. Sergeeva, L. Dubasova, P. Agrba, G. Mikailova, M. Prudnikov, N. Shakhova, Towards increase of diagnostic efficacy in gynecologic OCT. Proc. OSA-SPIE 8802(05), 1–7 (2013)Google Scholar
  42. 42.
    P. Crow, N. Stone, C.A. Kendall, J.S. Uff, J.A.M. Farmer, H. Barr, M.P.J. Wright, The use of Raman spectroscopy to identify and grade prostatic adenocarinoma in vitro. Br. J. Cancer 89, 106–108 (2003)CrossRefGoogle Scholar
  43. 43.
    A. Shapiro, O.N. Gofrit, G. Pizov, J.K. Cohen, J. Maier, Raman Molecular Imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur. Urol. 59, 106–112 (2011)CrossRefGoogle Scholar
  44. 44.
    M.C.H. Prieto, P. Matousek, M. Towrie, A.W. Parker, M. Wright, A.W. Ritchie, N. Stone, Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. J. Biomed. Opt. 10(4), 044006-1-6 (2005)Google Scholar
  45. 45.
    E.M. Kanter, S. Majumder, G.J. Kanter, E.M. Woeste, A. Mahadevan-Jansen, Effect of hormonal variation on Raman spectra for cervical disease detection. Am. J. Obstet. Gynecol. 200, 512e1-e5 (2009)Google Scholar
  46. 46.
    Z. Huang, S.K. Teh, W. Zheng, K. Lin, K.Y. Ho, M. The, K.G. Yeoh, In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens. Bioelectron. 26, 383–389 (2010)CrossRefGoogle Scholar
  47. 47.
    P. Ashok, M.E. Giardini, K. Dholakia, W. Sibbett, A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics. J. Biophotonics 7(1–2), 103–109 (2014)CrossRefGoogle Scholar
  48. 48.
    A.A. Tanbakuchi, J.A. Udovich, A.R. Rouse, K.D. Hatch, A.F. Gmitro, In-vivo imaging of ovarian tissue using a novel confocal microlaparoscope, Am. J. Obstet. Gynecol. 202(1), 90.e1-9 (2010)Google Scholar
  49. 49.
    M. Goetz, R. Kiesslich, H.-P. Dienes, U. Drebber, E. Murr, A. Hoffman, S. Kanzler, P.R. Galle, P. Delaney, M.F. Neurath, In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time. Endoscopy 40(7), 554–562 (2008)CrossRefGoogle Scholar
  50. 50.
    M. Goetz, I. Deris, M. Vieth, E. Murr, A. Hoffman, P. Delaney, P.R. Galle, M.F. Neurath, R. Kiesslich, Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging and plane depth. J. Hepatol. 53(1), 84–90 (2010)CrossRefGoogle Scholar
  51. 51.
    B. Rosa, B. Herman, J. Szewczyk, B. Gayet, Laparoscopic optical biopsies: in vivo robotized mosaicing with probe-based confocal endomicroscopy. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1339–1345 (2011)Google Scholar
  52. 52.
    J. Meng, L. Song, Biomedical photoacoustics in China. Photoacoustics 1(2), 43–48 (2013)CrossRefGoogle Scholar
  53. 53.
    R. Ma, A. Taruttis, V. Ntziachristos, D. Razansky, Multispectral optoacoustic tomography (MSOT) scanned for whole-body small animal imaging. Opt. Express 17(24), 2414–2426 (2009)CrossRefGoogle Scholar
  54. 54.
    L.-D Liao, J. Orellana, Y.-H. Liu, Y.-R. Lin, A. Vipin, N.V. Thakor, K. Shen, E. Wilder-Smith, Imaging of temperature dependent hemodynamics in the rat sciatic nerve by functional photoacoustic microscopy. BioMed. Eng. OnLine 12(120), 1–12 (2013)Google Scholar
  55. 55.
    B. Lihong, B. Shen, Z. Cheng, Fluorescent imaging of cancerous tissues for targeted surgery. Adv. Drug Deliv. Rev. 76, 21–38 (2014)CrossRefGoogle Scholar
  56. 56.
    L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, Z. Dai, Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22), 5814–5821 (2014)CrossRefGoogle Scholar
  57. 57.
    A. Buehler, E. Herzog, D. Razansky, V. Ntziachristos, Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 35(14), 2475–2477 (2010)CrossRefGoogle Scholar
  58. 58.
    I.N. Papadopoulos, O. Simandoux, S. Farahi, J.P. Huignard, E. Bossy, D. Psaltis, C. Moser, Optical-resolution photoacoustic microscopy by use of a multimode fiber. Appl. Phys. Lett. 102, 21 (2013)CrossRefGoogle Scholar
  59. 59.
    J. Staley, E. Hondebrink, W. Peterson, W. Steenbergen, Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging. Opt. Express 9(2), 30553–30562 (2013)CrossRefGoogle Scholar
  60. 60.
    K. Jansen, G. van Soest, A.F.W. van der Steen, Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification. Ultrasound Med. Biol. 40(6), 1037–1048 (2014)CrossRefGoogle Scholar
  61. 61.
    K.J. Zuzak, S.C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, E. Livingston, Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. Am. J. Surg. 195(4), 491–497 (2008)CrossRefGoogle Scholar
  62. 62.
    G. Lu, B. Fei, Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)CrossRefGoogle Scholar
  63. 63.
    E.O. Olweny, S. Faddegon, S.L. Best, N. Jackson, E.F. Wehner, Y.K. Tan, K.J. Zuzak, J.A. Cadeddu, Renal oxygenation during robotic-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J. Endourol. 27(3), 265–269 (2013)CrossRefGoogle Scholar
  64. 64.
    Z.-W. Liu, S. Faddegon, E.O. Olweny, S.L. Best, N. Jackson, G.V. Raj, K.J. Zuzak, J.A. Cadeddu, Renal oxygenation during partial nephrectomy: a comparison between artery-only occlusion versus artery and vein occlusion. J. Endourol. 27(4), 470–474 (2013)CrossRefGoogle Scholar
  65. 65.
    S. Kiyotoki, J. Nishikawa, T. Okamoto, K. Hamabe, M. Saito, A. Goto, Y. Fujita, Y. Hamamoto, Y. Takeuchi, S. Satori, I. Sakaida, New method for detection of gastric cancer by hyperspectral imaging: a pilot study. J. Biomed. Opt. 18(2), 26010 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.MedtronicSingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringNational University of IrelandGalwayIreland

Personalised recommendations