Neurocognitive Aspects of Musical Improvisation and Performance

Part of the Creativity in the Twenty First Century book series (CTFC)


Improvisation is a bedrock of human creativity; it is ubiquitous in musical performance and is considered one of the most abstract and complex aspects of (musical) behaviour. Many scientists still believe that creativity and musical improvisation are too difficult to subject to empirical enquiry. However, musical creativity is an excellent means to study cognitive processes such as pattern formation and recognition, top–down attentional control, expectation, imagery, aesthetics and embodied cognition. Furthermore, musical improvisation is usually an intensely pleasurable experience, whereby the creator finds him- or herself in an optimal relationship between his/her capabilities and actions, similar to a flow-like creative state. In this chapter we present our current neurocognitive understanding of several facets of musical creativity.


Flow Experience Divergent Thinking Gamma Power Dorsal Premotor Cortex Musical Style 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research is partially supported by the Research Grant EP/H01294X funded by the EPSRC, UK and the CREAM project (Grant Agreement no. 612022) funded by the European Commission.


  1. Beeman, M. J., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., & Greenblatt, R. (2004). Neural activity when people solve verbal problems with insight. PLos Biology, 2(4), E97.Google Scholar
  2. Bengtsson, S. L., Csikszentmihalyi, M., & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19(5), 830–842. doi: 10.1162/jocn.2007.19.5.830.CrossRefGoogle Scholar
  3. Boden, M. (1990). The creative mind. Abacus.Google Scholar
  4. Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23(10), 2791–2803.CrossRefGoogle Scholar
  5. Carlsson, I., Wendt, P.E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.Google Scholar
  6. Cooper, G., & Meyer, L. B. (1960). The rhythmic structure of music. Chicago: University of Chicago Press.Google Scholar
  7. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience (1st ed.). New York: Harper & Row.Google Scholar
  8. Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: HarperCollins.Google Scholar
  9. Damasio, A. R. (1990). Synchronous activation in multiple cortical regions: Mechanisms for recall. Seminars in the Neurosciences, 2, 287–297.Google Scholar
  10. Darby, D. G., Nobre, A. C., Thangaraj, V., Edelman, R., Mesulam, M. M., & Warach, S. (1996). Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage, 3(1), 53–62. doi: 10.1006/nimg.1996.0006.CrossRefGoogle Scholar
  11. De Dreu, C. K., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38(5), 656–669.CrossRefGoogle Scholar
  12. Dean, R. T., & Bailes, F. A. (2010). The control of acoustic intensity during jazz and free improvisation performance. Critical Studies in Improvisation/Études Critiques en Improvisation, 6(2), 1–22.Google Scholar
  13. Diaz, F. M. (2013). Mindfulness, attention, and flow during music listening: An empirical investigation. Psychology of Music, 41(1), 42–58.CrossRefGoogle Scholar
  14. Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13(4), 746–761. doi: 10.1016/j.concog.2004.07.002.CrossRefGoogle Scholar
  15. Dijksterhuis, A., Bos, M. W., Nordgren, L. F., & van Baaren, R. B. (2006). On making the right choice: The deliberation-without-attention effect. Science, 311, 1005–1007.CrossRefGoogle Scholar
  16. Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15, 135–146.CrossRefGoogle Scholar
  17. Dijksterhuis, A., & Nordgren, L. F. (2006). A theory of unconscious thought. Perspectives on Psychological Science, 1, 95–109.CrossRefGoogle Scholar
  18. Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences, 15(5), 191–199. doi: 10.1016/j.tics.2011.03.007.CrossRefGoogle Scholar
  19. Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
  20. Fritz, B. S., & Avsec, A. (2007). The experience of flow and subjective well-being of music students. Horizons of Psychology, 16(2), 5–17.Google Scholar
  21. Fullagar, C. J., Knight, P. A., & Sovern, H. S. (2013). Challenge/skill balance, flow, and performance anxiety. Applied Psychology, 62(2), 236–259.CrossRefGoogle Scholar
  22. Gardner, H. (1983). Frames of mind. New York: Basic Books.Google Scholar
  23. Gazzaniga, M. S. (2004). The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  24. Hämäläinen, M. H., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32, 35–42.Google Scholar
  25. Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 5, 369–379.CrossRefGoogle Scholar
  26. Johnson-Laird, P. N. (2002). How jazz musicians improvise. Music Perception, 19(3), 415–442.CrossRefGoogle Scholar
  27. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS One, 3(2), e1679. doi: 10.1371/journal.pone.0001679.CrossRefGoogle Scholar
  28. Limb, C. J., Jiradejvong, P., Lopez-Gonzalez, M., Rankin, S. K., & Donnay, G. F. (2014). Neural Substrates of interactive musical improvisation: An fMRI study of ‘trading fours’ in jazz. PLoS One, 9(2), e88665. doi: 10.1371/journal.pone.0088665.CrossRefGoogle Scholar
  29. Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., et al. (2012). Neural correlates of lyrical improvisation: An FMRI study of freestyle rap. Sci Rep, 2, 834. doi: 10.1038/srep00834.Google Scholar
  30. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.CrossRefGoogle Scholar
  31. MacDonald, R., Byrne, C., & Carlton, L. (2006). Creativity and flow in musical composition: An empirical investigation. Psychology of Music, 34(3), 292–306.CrossRefGoogle Scholar
  32. Marin, M. M., & Bhattacharya, J. (2013). Getting into the musical zone: Trait emotional intelligence and amount of practice predict flow in pianists. Frontiers in Psychology, 4, 853. doi: 10.3389/fpsyg.2013.00853.CrossRefGoogle Scholar
  33. Martindale, C. (2004). Biological bases of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, UK: Cambridge University Press.Google Scholar
  34. Nunez, P. (1995). Neocortical dynamics and human EEG rhythms. New York: Oxford University Press.Google Scholar
  35. Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., et al. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499–515.CrossRefGoogle Scholar
  36. O’Neill, S. (1999). Flow theory and the development of musical performance skills. Bulletin of the Council for Research in Music Education, 129–134.Google Scholar
  37. Pandya, D. N., & Kuypers, H. G. (1969). Cortico-cortical connections in the rhesus monkey. Brain Research, 13(1), 13–36.CrossRefGoogle Scholar
  38. Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception, 11, 409–464.CrossRefGoogle Scholar
  39. Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65.CrossRefGoogle Scholar
  40. Petrides, K. V., & Furnham, A. (2001). Trait emotional intelligence: Psychometric investigation with reference to established trait taxonomies. European Journal of Personality, 15, 425–448.CrossRefGoogle Scholar
  41. Pfurtscheller, G., & Lopes Da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.Google Scholar
  42. Platel, H., Price, C., Baron, J. C., Wise, R., Lambert, J., Frackowiak, R. S., et al. (1997). The structural components of music perception. A functional anatomical study. Brain, 120(Pt 2), 229–243.CrossRefGoogle Scholar
  43. Pressing, J. (1998). Psychological constraints on improvisational expertise and communication. In B. Nettl & M. Russell (Eds.), In the course of performance: Studies in the world of musical improvisation (pp. 47–68). Chicago: Chicago University Press.Google Scholar
  44. Ramachandran, V. S., & Hubbard, E. M. (2003). Hearing colors, tasting shapes. Scientific American, 288, 52–59.CrossRefGoogle Scholar
  45. Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42(7), 305–310.Google Scholar
  46. Sandkuhler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS One, 3(1), e1459. doi: 10.1371/journal.pone.0001459.CrossRefGoogle Scholar
  47. Sawyer, K. (1992). Improvisational creativity: An analysis of jazz performance. Creativity Research Journal, 5(3), 253–263.CrossRefGoogle Scholar
  48. Sawyer, R. K. (2006). Group creativity: Musical performance and collaboration. Psychology of Music, 34(2), 148–165.CrossRefGoogle Scholar
  49. Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009). Supramarginal gyrus involvement in visual word recognition. Cortex, 45(9), 1091–1096.CrossRefGoogle Scholar
  50. Thompson, E., Lutz, A., & Cosmelli, D. (2004). Neurophenomenology: An introduction for neurophilosophers. In A. Brook & K. Akins (Eds.), Cognition and the brain: The philosophy and neuroscience movement. New York, Cambridge: Cambridge University Press.Google Scholar
  51. Ullén, F., de Manzano, Ö., Almeida, R., Magnusson, P. K., Pedersen, N. L., Nakamura, J., et al. (2012). Proneness for psychological flow in everyday life: Associations with personality and intelligence. Personality and Individual Differences, 52(2), 167–172.CrossRefGoogle Scholar
  52. Ullen, F., Eriksson, H., Fransson, P., de Manzano, O., & Pinho, A. L. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34(18), 6156–6163.CrossRefGoogle Scholar
  53. Ulrich, F., Keller, J., Hoenig, K., Waller, C., & Grön, G. (2014). Neural correlates of experimentally induced flow experiences. Neuroimage, 86, 194–202.CrossRefGoogle Scholar
  54. Varela, F. J. (1995). Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biological Research, 28, 81–95.Google Scholar
  55. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239.CrossRefGoogle Scholar
  56. Wallas, G. (1926). The art of thought. New York: Harcourt Brace.Google Scholar
  57. Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends In Cognitive Sciences, 7, 553–559.Google Scholar
  58. Weinberger, D. R., Berman, K. F., & Zee, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 43, 114–124.CrossRefGoogle Scholar
  59. Zhong, C.-B., Dijksterhuis, A., & Galnisky, A. D. (2008). The merits of unconscious thought in creativity. Psychological Science, 19, 912–918.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of MathematicsImperial CollegeLondonUK
  2. 2.Department of PsychologyGoldsmiths, University of LondonLondonUK

Personalised recommendations