Advertisement

Creating Bio-inspired Solution Ideas Using Biological Research Articles

Chapter
Part of the Creativity in the Twenty First Century book series (CTFC)

Abstract

What gives you the idea of scrutinizing leaf beetle legs when conceptualizing car tires? Questions like this are approached by a number of methods and tools developed to support the creation of solution ideas for technical problems based on biological inspiration. BIOscrabble, the approach applied here, supports drawing such inspiration from biological research articles. Due to their huge variety and novelty, these articles are expected to have a strong potential for inspiring bio-inspired technical solutions and are assumed to enhance creative thinking during solution search in bio-inspired design by the authors. This work shows that mechanical engineers lacking a biological background are able to creatively use biological research articles for the development of bio-inspired solution ideas. Moreover, during solution search in bio-inspired design, these articles are beneficial in terms of offering additional stimulation for creativity when compared to one of the most relevant bio-inspired design databases.

Keywords

Creative Thinking Solution Idea Spider Silk Solution Search Biological Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beckmann, K.-H., & Kobialka, H. (2007). Die Maskenschnecke Isognomostoma isognomostomos—Weichtier des Jahres 2007. Club Conchylia Informationen, 38(3/4), 42–46.Google Scholar
  2. Carey, F. G., & Teal, J. M. (1966). Heat conservation in tuna fish muscle. Proc Natl Acad Sci USA, 56(5), 1464–1469.CrossRefGoogle Scholar
  3. Chakrabarti, A., Sarkar, P., Leelavathamma, B., & Nataraju, B. S. (2005). A functional representation for aiding biomimetic and artificial inspiration of new ideas. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 19(2), 113–132.CrossRefGoogle Scholar
  4. Cheong, H., & Shu, L. H. (2010). Supporting Creative Concept Generation by Engineering Students with Biomimetic Design. In Proceedings of the 1st CEEA Conference, Ontario, 2010.Google Scholar
  5. Cheong, H., & Shu, L. H. (2012). Automatic extraction of causally related functions from natural-language text for biomimetic design. In Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, 2012.Google Scholar
  6. Dastjerdi, A. K., Pagano, M., Kaartinen, M. T., McKee, M. D., & Barthelat, F. (2012). Cohesive behavior of soft biological adhesives: Experiments and modeling. Acta Biomaterialia, 8(9), 3349–3359. doi: 10.1016/j.actbio.2012.05.005.CrossRefGoogle Scholar
  7. Eder, W. E., & Hosnedl, S. (2008). Design-engineering—a manual for enhanced creativity. Boca Raton: Taylor & Francis Group LLC.Google Scholar
  8. Flämig, J. (2013). Weiterentwicklung einer Unterstützung der Lösungssuche in der Bionik am Beispiel eines Trinkwasseraufbereiters. unpublished term paper, Institute of Product Development, Technische Universität München.Google Scholar
  9. Gao, H., Ji, B., Buehler, M. J., & Yao, H. (2004). Flaw tolerant bulk and surface nanostructures of biological systems. Mechanics and Chemistry of Biosystem: MCB, 1(1), 37–52.Google Scholar
  10. García Hernández, J. E., González Martín, M. M., Notario del Pino, J. S., & Arbelo Rodríguez, C. D. (1992). Treatment of wastewater effluents with Phillipsite-rich tuffs. Environmental Pollution, 76(3), 219–223.CrossRefGoogle Scholar
  11. Gorb, S. N., Beutel, R. G., Gorb, E. V., Jiao, Y., Kastner, V., Niederegger, S., et al. (2002). Structural design and biomechanics of friction-based releasable attachment devices in insects. Integrative and Comparative Biology, 42(6), 1127–1139. doi: 10.1093/icb/42.6.1127.CrossRefGoogle Scholar
  12. Gorb, E., Kastner, V., Peressadko, A., Arzt, E., Gaume, L., Rowe, N., & Gorb, S. (2004). Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. Journal of Experimental Biology, 207(Pt 17), 2947–2963.CrossRefGoogle Scholar
  13. Gramann, J. (2004). Problemmodelle und Bionik als Methode. Technische Universität München.Google Scholar
  14. Guschlbauer, C. L., Scharstein, H., & Büschges, A. (2007). The extensor tibiae muscle of the stick insect: Biomechanical properties of an insect walking leg muscle. Journal of Experimental Biology, 210(Pt 6), 1092–1108.CrossRefGoogle Scholar
  15. Hawthorn, A. C., & Opell, B. D. (2003). Van der Waals and hygroscopic forces of adhesion generated by spider capture threads. Journal of Experimental Biology, 206(Pt 22), 3905–3911.CrossRefGoogle Scholar
  16. Henze, A. (2013). Entwicklung eines biomimetischen Konzeptes zur Verhinderung von Aquaplaning unter Nutzung und Weiterentwicklung von BIOscrabble. unpublished bachelor thesis, Institute of Product Development, Technische Universität München.Google Scholar
  17. Hill, B. (1997). Innovationsquelle Natur. Technische Universität München.Google Scholar
  18. Hosoda, N., & Gorb, S. N. (2012). Underwater locomotion in a terrestrial beetle: Combination of surface de-wetting and capillary forces. Proceedings of the Royal Society B: Biological Sciences, 279(1745), 4236–4242. doi: 10.1098/rspb.2012.1297.CrossRefGoogle Scholar
  19. Huang, X., Liu, G., & Wang, X. (2012). New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Advanced Materials, 24(11), 1482–1486. doi: 10.1002/adma.201104668.CrossRefGoogle Scholar
  20. Hull, B. E., & Staehelin, L. A. (1976). Functional significance of the variations in the geometrical organization of tight junction networks. Journal of Cell Biology, 68(3), 688–704.CrossRefGoogle Scholar
  21. Jemli, M., Alouini, Z., Sabbahi, S., & Gueddari, M. (2002). Destruction of fecal bacteria in wastewater by three photosensitizers. Journal of Environmental Monitoring, 4(4), 511–516.CrossRefGoogle Scholar
  22. Kaiser, M. K., Hashemi Farzaneh, H., & Lindemann, U. (2012). An approach to support searching for biomimetic solutions based on system characteristics and its environmental interactions. In D. Marjanovic, M. Storga, N. Pavkovic, N. Bojcetic (Eds.). Proceedings of the International Design Conference, Dubrovnik, 2012.Google Scholar
  23. Kaiser, M. K., Hashemi Farzaneh, H., & Lindemann, U. (2013). BIOscrabble—extraction of biological analogies out of large text sources. In Paper presented at the 5th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Vilamoura, 19–22 September 2013.Google Scholar
  24. Kaiser, M. K., Hashemi Farzaneh, H., & Lindemann, U. (2014). BIOscrabble—the role of different types of search terms when searching for biological inspiration in biological research articles. In Marjanovic, D., Storga, M., Pavkovic, N., Bojcetic, N. (Eds.). Proceedings of the International Design Conference, Dubrovnik, 2014.Google Scholar
  25. Lei, G. Y., & Ma, J. (2009). Phosphorus removal and mechanisms for advanced treatment of sewage by Spirogyra. Huan Jing Ke Xue, 30(4), 1066–1072.Google Scholar
  26. Löffler, S. (2008). Anwenden bionischer Konstruktionsprinzipe in der Produktentwicklung. Technische Universität Carolo-Wilhelmina zu Braunschweig, 2008.Google Scholar
  27. Macnish, D. (2013). Development of an Adaptive Surface with Variable Heat Conductivity. unpublished bachelor thesis, Institute of Product Development, Technische Universität München.Google Scholar
  28. Nagel, J. K. S., & Stone, R. B. (2011). A systematic approach to biologically-inspired engineering design. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, 2011.Google Scholar
  29. Nagel, J. K. S., Stone, R. B., & McAdams, D. A. (2010). An engineering-to-biology thesaurus for engineering design. In Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, 2010.Google Scholar
  30. Niizuma, Y., Gabrielsen, G. W., Sato, K., Watanuki, Y., & Naito, Y. (2007). Brünnich’s guillemots (Uria lomvia) maintain high temperature in the body core during dives. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 147(2), 438–444.CrossRefGoogle Scholar
  31. Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering design: A systematic approach. London: Springer.CrossRefGoogle Scholar
  32. Petie, R., & Muller, M. (2007). Curvature facilitates prey fixation in predatory insect claws. Journal of Theoretical Biology, 244(4), 565–575.CrossRefGoogle Scholar
  33. Pezowicz, C. A., Robertson, P. A., & Broom, N. D. (2005). Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. Journal of Anatomy, 207(4), 299–312.CrossRefGoogle Scholar
  34. Reichard, J. D., Fellows, S. R., Frank, A. J., & Kunz, T. H. (2010). Thermoregulation during flight: Body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis). Physiological and Biochemical Zoology, 83(6), 885–897. doi: 10.1086/657253.CrossRefGoogle Scholar
  35. Rommel, S. A., & Caplan, H. (2003). Vascular adaptations for heat conservation in the tail of Florida manatees (Trichechus manatus latirostris). Journal of Anatomy, 202(4), 343–353.CrossRefGoogle Scholar
  36. Rutkovskiy, A., Mariero, L. H., Nygård, S., Stensløkken, K. O., Valen, G., & Vaage, J. (2012). Transient hyperosmolality modulates expression of cardiac aquaporins. Biochemical and Biophysical Research Communications, 425(1), 70–75. doi: 10.1016/j.bbrc.2012.07.052.CrossRefGoogle Scholar
  37. Shu, L. H. (2010). A natural-language approach to biomimetic design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 24(4), 507–519.CrossRefGoogle Scholar
  38. Spiegel, J. (2013). Entwicklung einer Methodik zur Strukturierung großer Datenmengen zur Anwendung in der biomimetischen Lösungssuche. unpublished bachelor thesis, Institute of Product Development, Technische Universität München.Google Scholar
  39. Stitt, J. T. (1976). The regulation of respiratory evaporative heat loss in the rabbit. Journal of Physiology, 258(1), 157–171.CrossRefGoogle Scholar
  40. Stroble, J. K., Stone, R. B., McAdams, D. A., & Watkins, S. E. (2009). An engineering-to-biology thesaurus to promote better collaboration, creativity and discovery. In R. Rajkumar, & S. Essam (Eds). Proceedings of the 19th CIRP Design ConferenceCompetitive Design, Cranfield, 2009.Google Scholar
  41. Topp, M. (2013). Weiterentwicklung einer biomimetischen Suchmethode am Beispiel der Entwicklung eines biomimetischen Verschlussmechanismus für Gepäckstücke. unpublished term paper, Institute of Product Development, Technische Universität München.Google Scholar
  42. Torre-Bueno, J. R. (1976). Temperature regulation and heat dissipation during flight in birds. Journal of Experimental Biology, 65(2), 471–482.Google Scholar
  43. Vandevenne, D., Verhaegen, P. A., & Dewulf, S. (2011). A scalable approach for the integration of large knowledge repositories in the biologically-inspired design process. In J. F. DesignBoujut, T. Tomiyama, Y. Reich, & A. Duffy (Eds.), International Conference on Engineering. London: The Free Press.Google Scholar
  44. Vandevenne, D., Caicedo, J., Verhaegen, P.-A., Dewulf, S., & Duflou, J. R. (2012). Webcrawling for a biological strategy corpus to support biologically-inspired design. In A. Chakrabarti (Ed.), CIRP Design 2012 (pp. 83–92). London: Springer.Google Scholar
  45. Vattam, S. S., & Goel, A. K. (2011). Foraging for inspiration: Understanding and supporting the online information seeking practices of biologically inspired designers. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, 2011.Google Scholar
  46. Wade, K. R., Robertson, P. A., & Broom, N. D. (2011). A fresh look at the nucleus-endplate region: New evidence for significant structural integration. European Spine Journal, 20(8), 1225–1232. doi: 10.1007/s00586-011-1704-y.CrossRefGoogle Scholar
  47. Wainwright, D. K., Kleinteich, T., Kleinteich, A., Gorb, S. N., & Summers, A. P. (2013). Stick tight: Suction adhesion on irregular surfaces in the northern clingfish. Biology Letters, 9(3), 20130234. doi: 10.1098/rsbl.2013.0234.CrossRefGoogle Scholar
  48. Watson, J. A., Cribb, B. W., Hu, H. M., & Watson, G. S. (2011). A dual layer hair array of the brown lacewing: Repelling water at different length scales. Biophysical Journal, 100(4), 1149–1155. doi: 10.1016/j.bpj.2010.12.3736.CrossRefGoogle Scholar
  49. Yang, B., Lan, C. Y., Yang, C. S., Liao, W. B., Chang, H., & Shu, W. S. (2006). Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environmental Pollution, 143(3), 499–512.CrossRefGoogle Scholar
  50. Zheng, X., Zhang, L., Li, J., Luo, S., & Cheng, J. P. (2011). Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: Reusable acid catalysts and catalyst supports for chiral amines. Chemical Communications (Cambridge, England), 47(45), 12325–12327. doi: 10.1039/c1cc14178c.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Institute of Product Development, Mechanical EngineeringTechnische Universität MünchenGarchingGermany

Personalised recommendations