Abstract
FullSWOF_2D (Full Shallow Water equation for Overland Flow in two dimensions) is a free software designed for shallow water flow simulations. The shallow water equations are solved thanks to a well-balanced finite volume scheme (based on the hydrostatic reconstruction), which is adapted to the properties of the model considered (in particular conservative laws, hyperbolic system, and steady states). The sources of this software (in C++) are available from https://sourcesup.renater.fr/projects/fullswof-2D/. This software has been validated on several analytical test cases integrated in SWASHES library and on rainfall overland flow simulations. Because of the simulations on big data necessity, this software has been parallelized with two different strategies (MPI and SKELGIS) in the framework of the CEMRACS 2012. Our purpose is to continue the comparison and the validation of these two versions of FullSWOF_Paral on realistic test cases. Our methodology will consist in comparing these two approaches on classical test cases such as Malpasset’s dam break with 2D hydraulic softwares such as MIKE 21, MIKE 21 FM, and TELEMAC 2D. The two strategies are presented in this paper. As this work is still in progress, only results from MPI version are presented here. More results will be given in future works.
Olivier Delestre is also affiliated to Lab. J.A. Dieudonné UMR 7351 CNRS
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Delestre, O. (2010). Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. PhD thesis University of Orléans, in french. http://tel.archives-ouvertes.fr/INSMI/tel-00531377/fr.
Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., Laguerre, C., et al. (2014). FullSWOF: A software for overland flow simulation. In P. Gourbesville, J. Cunge, & G. Caignaert (Eds.), Advances in Hydroinformatics (pp. 221–231). Springer Hydrogeology.
Esteves, M., Faucher, X., Galle, S., & Vauclin, M. (2000). Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values. Journal of Hydrology, 228, 265–282.
Tatard, L., Planchon, O., Wainwright, J., Nord, G., Favis-Mortlock, D., Silvera, N., et al. (2008). Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. Journal of Hydrology, 348(1–2), 1–12.
Goutal, N., & Maurel, F. (2002). A finite volume solver for 1D shallow-water equations applied to an actual river. International Journal for Numerical Methods in Fluids, 38, 1–19.
Caleffi, V., Valiani, A., & Zanni, A. (2003). Finite volume method for simulating extreme flood events in natural flood events in natural channels. Journal of Hydraulic Research, 41(2), 167–177.
Alcrudo, F., & Gil, E. (1999). The Malpasset dam break case study. In The 4th CADAM Workshop, Zaragoza (pp. 95–109).
Valiani, A., Caleffi, V., & Zanni, A. (2002). Case study: Malpasset dam-break simulation using a two-dimensional finite volume methods. Journal of Hydraulic Engineering, 128(5), 460–472.
Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261–1285.
Andres, L. (2012). L’apport de la donnée topographique pour la modélisation 3D fine et classifiée d’un territoire, in french, Revue XYZ (Vol. 133, 4th trimester, pp. 24–30).
Abily, M., Bertrand, N., Delestre, O., Richet, Y., Duluc, C.-M., & Gourbesville, P. (2014). Global sensitivity analysis with 2D hydraulic codes: Application on uncertainties related to high resolution topographic data. In Proceeding of SimHydro 2014: Modelling of rapid transitory flows. Sophia Antipolis, France, June 11–13, 2014.
Aackermann, P., Pedersen, P., Engsig-Karup, A., Clausen, T., & Grooss, J. (2013). Development of a GPU-accelerated mike 21 solver for water wave dynamics. In R. Keller, D. Kramer, & J.P. Weiss (Eds.), Facing the Multicore-Challenge III, Springer Berlin Heidelberg (Vol. 7686, pp. 129–130).
Brodtkorb, A. R., Saetra, M. L., & Altinakar, M. (2012). Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation. Computers and Fluids, 55, 1–12.
DHI. (2007). MIKE 21 FLOW MODEL (p. 58). Hydrodynamic module: Scientific documentation. Danish Hydraulics Institute.
DHI. (2007). MIKE 21 and MIKE 3 FLOW MODEL FM (p. 50). Hydrodynamic and transport module: Scientific documentation. Danish Hydraulics Institute.
Hervouet, J.-M. (1999). TELEMAC, a hydroinformatic system/Télémac, un système hydroinformatique. La Houille Blanche, 3–4, 21–28.
Hervouet, J.-M., & Petitjean, A. (1999). Malpasset dam-break revisited with two-dimensional computations. Journal of Hydraulic Research, 37(6), 777–788.
Hervouet, J.-M. (2000). A high resolution 2-D dam-break model using parallelization. Hydrological Processes, 14, 2211–2230.
Hervouet, J.-M. (2007). Hydrodynamics of free surface flows: Modelling with the finite element. West Sussex: Wiley.
Delestre, O., Darboux, F., James, F., Lucas, C., Laguerre, C. & Cordier, S. (submitted). FullSWOF: A free software package for the simulation of shallow water flows. arxiv.org/abs/1401.4125.
Cordier, S., Coullon, H., Delestre, O., Laguerre, C., Le, M. H., Pierre, D., et al. (2013). FullSWOF_Paral: Comparison of two parallelization strategies (MPI and SKELGIS) on a software designed for hydrology applications, ESAIM: Proc., 43, 59–79.
Brugeas, L. (1996). Utilisation de MPI en décomposition de domaine. CNRS-IDRIS. http://www.idris.fr/data/publication/mpi.ps, p. 27.
EM Karniadakis, G., & Kirby II, R. M. (2003). Parallel scientific computing in C++ and MPI. Cambridge: Cambridge University Press.
Coullon, H., Le, M. -H., & Limet, S. (2013). Parallelization of shallow-water equations with the algorithmic skeleton library skelgis. International Conference of Computational Science. Barcelona Spain. Elsevier Procedia Computer Science, 18, 591–600.
Coullon, H., Limet, S. (2013). Algorithmic skeleton library for scientific simulations: SkelGIS. International Conference on High Performance Computing and Simulation. Helsinki Finland. IEEE HPCS 2013 (pp. 429–436).
Abily, M., Delestre, O., Amossé, L., Bertrand, N., Richet, Y., Duluc, C.-M., et al. (submitted). Uncertainty related to high resolution classified topographic data use for flood event modeling over urban areas: a sensitivity analysis based approach.
Abily, M., Delestre, O., Amosse, L., Bertrand, N., Laguerre, C., Duluc, C.-M. et al. (2014). Use of 3D classified topographic data with FullSWOF for High Resolution simulations of river flood event over a dense urban area. 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.
Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., Vo, T. N. T., et al. (2013). SWASHES: a compilation of Shallow-Water analytic solutions for hydraulic and environmental studies. International Journal for Numerical Methods in Fluids, 72, 269–300. doi:10.1002/fld.3741.
Delestre, O., Lucas, C., Ksinant, P.-A., Darboux, F., Laguerre, C., James, F., et al. (2014). SWASHES: A library for benchmarking in hydraulic. In Gourbesville, P., Cunge, J., & Caignaert, G., (Eds.), Advances in Hydroinformatics, Springer Hydrogeology (pp. 233–243).
Caleffi, V., Valiani, A., & Zanni, A. (2003). Finite volume method for simulating extreme flood events in natural channels. Journal of Hydraulic Research, 41, 167–177.
Valiani, A., Caleffi, V., & Zanni, A. (1999) Finite volume scheme for 2D Shallow-Water equations: Application to a flood event in the Toce river. The 4th CADAM Workshop, Zaragoza, Spain (pp. 185–206).
Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources, 34, 1195–1206.
Duran, A., Liang, Q., & Marche, F. (2013). On the well-balanced numerical discretization of shallow water equations on unstructured meshes. Journal of Computational Physics, 235, 565–586.
Malleron, N., Zaoui, F., Goutal, N., & Morel, T. (2011). On the use of a high-performance framework for efficient model coupling in hydroinformatics. Environmental Modelling and Software, 26, 1747–1758.
Singh, J., Altinakar, M. S., & Ding, Y. (2011). Two-dimensional modeling of dam-break flows over natural terrain using a central explicit scheme. Advances in Water Resources, 34, 1366–1375.
Mulder, T., Zaragosi, S., Jouanneau, J.-M., Bellaiche, G., Guérinaud, S., & Querneau, J. (2009). Deposits related to the failure of the Malpasset Dam in 1959 An analogue for hyperpycnal deposits from jokulhlaups. Marine Geology, 260, 81–89.
Benoist, G. (1989). Les études d’ondes de submersion des grands barrages d’EDF. La Houille Blanche, 1, 43–54.
Valiani, A., Caleffi, V., & Zanni, A. (1999). Finite volume scheme for 2D shallow-water equations. Application to Malpasset dam-break. In The 4th CADAM Workshop, Zaragoza (pp. 63–94).
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., & Perthame, B. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing, 25(6), 2050–2065.
Coullon, H., Fullana, J.-M., Lagrée, P.-Y., Limet, S., & Wang, X. (2014). blood flow arterial network simulation with the implicit parallelism library SkelGIS. International Conference of Computational Science. Cairns Australia (On press).
Mudalige, G. R., Giles, M. B., Reguly, I., Bertolli, C., & Kelly, P. H. J. (2012). Op2: An active library framework for solving unstructured mesh-based applications on multi-core and many-core architectures. IEEE innovative Parallel Computing (InPar) (pp. 1–12).
de Vito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen, F. H., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., & Hanrahan, P. (2011). Liszt: A domain specific language for building portable mesh-based PDE solvers. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC’11, pp. 1–12. ACM.
McCowan, A. D., Rasmussen, E. B., & Berg, P. (2001). Improving the performance of a two-dimensional hydraulic model for floodplain applications, In Hydraulics in Civil Engineering, (p. 11) T.I.o. Engineers (Ed.), Hobart, Australia.
DHI. (2007). mike 21 and mike 3 flow model fm (p. 50). Hydrodynamic and transport module: Scientific documentation. Danish Hydraulics Institute.
Aackermann, P., Pedersen, P., Engsig-Karup, A., Clausen, T. & Grooss, J. (2013). Development of a GPU-accelerated mike 21 solver for water wave dynamics. In R. Keller, D. Kramer, & J.-P. Weiss (Eds.), Facing the Multicore-Challenge III, Springer Berlin Heidelberg (Vol. 7686, pp. 129–130).
Sørensen, O. R., Sørensen, L. S., & Carlson, J. (2010). Parallelization of the flexible mesh modeling systems with MPI. In International MIKE by DHI Conference 2010 (pp. 30.1–30.8). Copenhagen, Denmark,
Karypis, G. & Kumar, V. (1998). METIS: family of multilevel partitioning algorithm. http://glaros.dtc.umn.edu/gkhome/views/metis.
Audouin, Y., Moulinec, C., Barber, R. W., Sunderland, A. G., Gu, X. -J. & Emerson, D. R. (2011). Preparing TELEMAC-2D for extremely large simulations. In Proceedings of the XVIIIth Telemac and Mascaret User Club 19–21 October 2011. Chatou (France): EDF R&D.
Acknowledgments
This work was granted access to the HPC resources of Aix-Marseille Université financed by the project Equip@Meso (ANR-10-EQPX-29-01) of the program “Investissements d’Avenir” supervised by the Agence Nationale pour la Recherche.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Delestre, O., Abily, M., Cordier, F., Gourbesville, P., Coullon, H. (2016). Comparison and Validation of Two Parallelization Approaches of FullSWOF_2D Software on a Real Case. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-287-615-7_27
Download citation
DOI: https://doi.org/10.1007/978-981-287-615-7_27
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-287-614-0
Online ISBN: 978-981-287-615-7
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)