Skip to main content

Rubber Plantations as a Mosquito Box Amplification in South and Southeast Asia

  • Chapter
Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia

Abstract

Using simple species richness index and geometric morphospaces, we compared the mosquito fauna in rubber plantations from Thailand and India and contrasted it with a fragmented forest fauna from northern Thailand. In rubber plantations, Aedes albopictus was the most frequent mosquito, together with a high proportion of filarial and malaria vectors. Because of the many breeding sites represented by the latex cups, heavy downpour during the rainy season probably transforms the rubber plantation ecosystems into mosquito-borne disease-transmitting systems. In the forest, a different composition of the mosquito fauna was observed, but A. albopictus was also the most frequent mosquito. Its presence and its different metric properties in the forest could suggest the possible existence of native populations in Thailand, in accordance with the hypothesis of its Southeast Asian origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apiwathnasorn C, Samung Y, Prummongkol S, Asavanich A, Komalamisra N, Mccall P (2006) Bionomics studies of Mansonia mosquitoes inhabiting the peat swamp forest. Southeast Asian J Trop Med Public Health 37:272–278

    PubMed  Google Scholar 

  • Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7:76–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Charrel RN, de Lamballerie X, Raoult D (2007) Chikungunya outbreaks – the globalization of vector borne diseases. N Engl J Med 356:769–771

    Article  CAS  PubMed  Google Scholar 

  • Cheong WH, Mak JW, Naidu S, Mahadevan S (1981) Armigeres subalbatus incriminated as an important vector of the dog heartworm Dirofilaria immitis and the bird Cardiofilaria in urban Kuala Lumpur. Southeast Asian J Trop Med Public Health 12:611–612

    CAS  PubMed  Google Scholar 

  • Delatte H, Bagny L, Brengue C, Bouetard A, Paupy C, Fontenille D (2011) The invaders: phylogeography of dengue and chikungunya viruses Aedes vectors, on the south west islands of the Indian Ocean. Infect Genet Evol. doi:10.1016/j.meegid.2011.07.016

    PubMed  Google Scholar 

  • Dujardin JP, Slice DE (2006) Contributions of morphometrics to medical entomology. Wiley, pp 435–447. 10.1002/9780470114209.ch25, http://dx.doi.org/10.1002/9780470114209.ch25

  • Dujardin JP, Thongsripong P, Henry AB (2012) The mosquito fauna: from metric disparity to species diversity. In: Wahl C (ed) Morphometrics. InTech, ISBN: 978-953-51-0172-7, Available from: http://www.intechopen.com/books/morphometrics/the-mosquito-fauna-from-metric-disparity-to-species-diversity

  • Gould DJ, Bailey CL, Vongpradist S (1982) Implication of forest mosquitoes in the transmission of Wuchereria bancrofti in Thailand. Mosq News 42:560–564

    Google Scholar 

  • Gübler DJ (1996) The global resurgence of arboviral diseases. Trans R Soc Trop Med Hyg 90:449–451

    Article  PubMed  Google Scholar 

  • Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, Tan LK, Lin RT, Ng LF, Bucht G, Abeyewickreme W, Ng LC (2010) Re-emergence of Chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore. J Gen Virol 4:1067–1076

    Article  Google Scholar 

  • Henry A, Thongsripong P, Fonseca-Gonzalez I, Jaramillo-Ocampo N, Dujardin JP (2010) Wing shape of dengue vectors from around the world. Infect Genet Evol. doi:10.1016/j.meegid.2009.12.001

    PubMed  Google Scholar 

  • Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, Dujardin JP (2007) Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Health 12:1354–1360

    Article  CAS  PubMed  Google Scholar 

  • Kumar NP, Rajan J, Kamaraj T, Jambulingam P (2008) A226v mutation in virus during the 2007 chikungunya outbreak in Kerala, India. J Gen Virol 89:1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Manju GE, Sushamabai S (2009) Outbreak of Chikungunya disease in Kerala in 2007. Indian Pediatr 46:440

    Google Scholar 

  • Morales Vargas RE, Phumala-Morales N, Tsunoda T, Apiwathnasorn C, Jean-Pierre D (2013) The phenetic structure of Aedes albopictus. Infect Genet Evol 13:242–251

    Article  PubMed  Google Scholar 

  • Paupy C, Girod R, Salvan M, Rodhain F, Failloux AA (2001) Population structure of Aedes albopictus from La Reunion island (Indian Ocean) with respect to susceptibility to a dengue virus. Heredity 87:273–283

    Article  CAS  PubMed  Google Scholar 

  • Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rattanarithikul R, Harbach R, Harrison B, Panthusiri P, Jones J, Coleman R (2005a) Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J Trop Med Public Health 36:1–97

    Google Scholar 

  • Rattanarithikul R, Harrison BA, Panthusiri P, Coleman RE (2005b) Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J Trop Med Public Health 36:1–80

    Google Scholar 

  • Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman RE (2006a) Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health 37:1–128

    Google Scholar 

  • Rattanarithikul R, Harrison BA, Panthusiri P, Peyton EL, Coleman RE (2006b) Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J Trop Med Public Health 37:1–85

    Google Scholar 

  • Rattanarithikul R, Harbach RE, Harrison BA, Panthurisi P, Coleman RE, Richardson J (2010) Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J Trop Med Public Health 41:1–225

    PubMed  Google Scholar 

  • Reiter P, Fontenille D, Paupy C (2006) Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect Dis 6:463–464

    Article  PubMed  Google Scholar 

  • Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Rosen L, Rozeboom EL, Reeves WC, Saugrain J, Gubler DJ (1976) A field trial of competitive displacement of Aedes polynesiensis by Aedes albopictus on a Pacific atoll. Am J Trop Med Hyg 25:906–913

    CAS  PubMed  Google Scholar 

  • Satitvipawee P, Wongkhang W, Pattanasin S, Hoithong P, Bhumiratana A (2012) Predictors of malaria-association with rubber plantations in Thailand. BMC Public Health 12:1115

    Article  PubMed Central  PubMed  Google Scholar 

  • Sumodan PK (2003) Potential of rubber plantations as breeding source for Aedes albopictus in Kerala, India. Dengue Bull 27:197–199

    Google Scholar 

  • Tanaka K, Mizusawa K, Saugstad E (1979) A revision of the adult and larval mosquitoes of Japan (including the Ryukyu archipelago and the Ogasawara islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst (Ann Arbor) 16:1–987

    Google Scholar 

  • Tawatsin A, Pengsakul T, Bhakdeenuan P, Chanama S, Anantgapreecha S, Molito C, Chompoosri J, Thammapalo S, Sawanpanyalert P, Siriyasatien P (2009) Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes Ae. Aegypti (L.) and Ae. albopictus Skuse (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 40:951–962

    PubMed  Google Scholar 

  • Taysum DH (1956) A medium for the cultivation of bacteria from Hevea latex. Appl Microbiol 19:54–59

    Google Scholar 

  • Triteeraprapab S, Kanjanopas K, Suwannadabba S, Sangprakarn S, Poovorawan Y, Scott AL (2000) Transmission of the nocturnal periodic strain of Wuchereria bancrofti by Culex quinquefasciatus: establishing the potential for urban filariasis in Thailand. Epidemiol Infect 125:207–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC (2011) Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A 10819:7872–7877

    Article  Google Scholar 

  • Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep A, Gandhe SS, Gokhle MD, Jacob GP, Hundekar SL, Mishra AC (2006) Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis 12:1580–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research at Kanchanaburi station received the kind help of Rapee Boonplueang (Department of Biology), Wilai Noonpakdee (Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand), Wirat Soysaeng (Vector-Borne Disease Control Center 4.1.7 Kanchanaburi, MOPH, Thailand), and Theeraphap Chareonviriyaphap (Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand). The research in the northern part of Thailand was helped by Waraporn Putalun (Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University) and Noppawan Phumala Morales (Department of Pharmacology, Faculty of Sciences, Mahidol University). The study in the Kerala state of India was funded by the University Grants Commission (India). Funding for the research in the Center of Thailand came from the Senior Research Scholar Program (RTA5280007) and the TRF/BIOTEC Special Program for Biodiversity Research and Training Grant (BRT R 150011). The investigation work in northern Thailand was supported by the PHC-SIAM grant number 25646ZL, as well as by IRD grant numbers HC3165-3R165-GABI-ENT2 and HC3165-3R165-NV00- THA1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Dujardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sumodan, P.K., Vargas, R.M., Pothikasikorn, J., Sumanrote, A., Lefait-Robin, R., Dujardin, JP. (2015). Rubber Plantations as a Mosquito Box Amplification in South and Southeast Asia. In: Morand, S., Dujardin, JP., Lefait-Robin, R., Apiwathnasorn, C. (eds) Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia. Springer, Singapore. https://doi.org/10.1007/978-981-287-527-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-527-3_10

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-526-6

  • Online ISBN: 978-981-287-527-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics