Advertisement

A Survey on Identification of Protein Complexes in Protein–protein Interaction Data: Methods and Evaluation

  • Praveen TumuluruEmail author
  • Bhramaramba Ravi
  • Sujatha Ch
Chapter
  • 952 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Since identification of protein complexes from protein–protein interaction (PPI) networks plays an important role in the computational biology, in this paper, we discuss different types of protein complex identification algorithms such as Markov Clustering algorithm, ClusterBFS, Connected Affinity Clique Extension, PE-weighted Clustering algorithm, Detection of Protein Complex Core and Attachment Algorithm and Dynamic Protein Complex Algorithm. Thereafter, we focus on computational analysis of protein complexes through various measures and various protein interaction databases, with which we can detect protein complexes effectively and efficiently.

Keywords

Protein–protein interaction network Protein complex Computational biology 

Notes

Acknowledgement

The authors published this paper under their Ph.D. work. The authors wish to thank the University Grants Commission (UGC) for extending financial support for this study, under the project “Development of a Software Tool to Identify Lung-Cancer Related Genes using Protein-Protein Interaction Network” with sanction F.NO:4-4/2014-15[MRP-SEM/UGC-SERO].

References

  1. 1.
    Tu S, Xu L (2010) A binary matrix factorization algorithm for protein complex prediction. In: IEEE international conference on bioinformatics and biomedicine workshops (BIBMW), ISBN: 978-1-4244-8304-4Google Scholar
  2. 2.
    Ou-Yang L, Dai DQ, Zhang XF (2013) Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization. PLoS One. doi: 10.1371/journal.pone.0062158
  3. 3.
    Li X, Wu M, Kwoh C, Ng S (2010) Computational approaches for detecting protein complexes from protein interaction networks. BMC Genom 11:S3. doi: 10.1186/1471-2164-11-s1-s3 CrossRefGoogle Scholar
  4. 4.
    Ji J, Zhang A, Liu C, Quan X, Liu Z (2012) Functional module detection from protein-protein interaction networks. IEEE Trans Knowl Data Eng 1Google Scholar
  5. 5.
    Brohee S, Van Helden J (2006) Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7:488. doi: 10.1186/1471-2105-7-488 CrossRefGoogle Scholar
  6. 6.
    van Dongen S (2000)Graph clustering by flow simulation. Ph. D. thesis. University of Utrecht, The Netherlands, May 2000Google Scholar
  7. 7.
    Tang X, Wang J, Li M, He Y, Pan Y (2014) A novel algorithm for detecting protein complexes with the breadth first search. BioMed Res Int 2014:354539Google Scholar
  8. 8.
    Adamcsek B, Palla G, Farkas IJ et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22:1021–1023CrossRefGoogle Scholar
  9. 9.
    Baumes MGJ, Magdon-Ismail M (2004) Efficient identification of overlapping communities. Intelligence and security informatics, vol 3495. Springer, Berlin, pp 27–36CrossRefGoogle Scholar
  10. 10.
    Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16(9):575–577CrossRefzbMATHGoogle Scholar
  11. 11.
    Lee C, Reid F, McDaid A et al. (2010) Detecting highly overlapping community structure by greedy clique expansion. Physics, pp 1002–1827Google Scholar
  12. 12.
    Zhang S, Ning X, Zhang XS (2006) Identification of functional modules in a PPI network by clique percolation clustering. Comput Biol Chem 30(6):445–451CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang J, Liu B, Li M et al (2010) Identifying protein complexes from interaction networks based on clique percolation and distance restriction. BMC Genomics 11(Suppl 2):S10CrossRefGoogle Scholar
  14. 14.
    Qi Y, Balem F, Faloutsos C et al (2008) Protein complex identification by supervised graph local clustering. Bioinformatics 24(13):i250–i268CrossRefGoogle Scholar
  15. 15.
    Zaki N, Efimov D, Berengueres J (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. doi: 10.1186/1471-2105-14-163
  16. 16.
    Gavin AC, Superti-Furga G (2003) Protein complexes and proteome organization from yeast to man. Curr Opin Chem Biol 7(1):21–27CrossRefGoogle Scholar
  17. 17.
    Zhao J, Hu X, He T, Li P, Zhang M, Shen X (2014) An edge-based protein complex identification algorithm with gene co-expression data (PCIA-GeCo). IEEE Trans Nanobiosci 13(2). ISSN: 1536-1241Google Scholar
  18. 18.
    Li M, Chen W, Wang J, Wu F-X, Pan Y (2004) Identifying dynamic protein complexes based on gene expression profiles and PPI networks. BioMed Res Int (Article ID 375262)Google Scholar
  19. 19.
    Wang J, Li M, Deng Y, Pan Y (2010) Recent advances in clustering methods for protein interaction networks. BMC Genomics 11(suppl 3):S10CrossRefGoogle Scholar
  20. 20.
    Wang J, Peng X, Peng W, Wu F (2014) Dynamic protein interaction network construction and applications. Proteomics 14(4–5):338–352CrossRefGoogle Scholar
  21. 21.
    Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics 10:169. doi: 10.1186/1471-2105-10-169 CrossRefGoogle Scholar
  22. 22.
    Friedel CC, Krumsiek J, Zimmer R (2008) Bootstrapping the interactome: unsupervised identification of protein complexes in yeast. In: Vingron M, Wong L (eds) 12th Annual international conference on research in computational molecular biology (RECOMB), of LNCS, vol 4955. Springer, Berlin, pp 3–16Google Scholar
  23. 23.
    Li P, He X, Hu X, Zhao J, Shen X, Zhang M, Wang Y (2014) A novel protein complex identification algorithm based on connected affinity clique extension (CACE). IEEE Trans nanobiosci 13:89. ISSN: 1536-1241Google Scholar
  24. 24.
    Srinivasa Rao V, Srinivas K, Sujini GN, Sunand Kumar GN (2014) Review article protein-protein interaction detection: methods and analysis. Int J Proteomics, vol 2014, Article ID 147648Google Scholar
  25. 25.
    Xenarios I, Salwínski Ł, Duan XJ, Higney P, Kim S-M, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305CrossRefGoogle Scholar
  26. 26.
    Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–539CrossRefGoogle Scholar
  27. 27.
    Mewes HW, Ruepp A, Theis F et al (2011) MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res 39(1):D220–D224CrossRefGoogle Scholar
  28. 28.
    Chatr-aryamontri A, Ceol A, Palazzi LM et al (2007) MINT: the molecular interaction database. Nucleic Acids Res 35(1):D572–D574CrossRefGoogle Scholar
  29. 29.
    Patil A, Nakai K, Nakamura H (2011) HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 39(1):D744–D749CrossRefGoogle Scholar
  30. 30.
    Han K, Park B, Kim H, Hong J, Park J (2004) HPID: the human protein interaction. Bioinformatics 20(15):2466–2470CrossRefGoogle Scholar
  31. 31.
    Fernández JM, Hoffmann R, Valencia A (2007) iHOP web services. Nucleic Acids Res 35:W21–W26CrossRefGoogle Scholar
  32. 32.
    Hermjakob H, Montecchi-Palazzi L, Lewington C et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455CrossRefGoogle Scholar
  33. 33.
    Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(Database issue):D452–D455Google Scholar
  34. 34.
    Prieto C, de Las Rivas J (2006) APID: agile protein interaction dataanalyzer. Nucleic Acids Res 34:W298–W302CrossRefGoogle Scholar
  35. 35.
    Cowley MJ, Pinese M, Kassahn KS et al (2012) PINA v2. 0: mining interactome modules. Nucleic Acids Res 40:D862–D865CrossRefGoogle Scholar
  36. 36.
    Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–539CrossRefGoogle Scholar
  37. 37.
    Xenarios I, Salwinski L, Duan XJ, Higney P, Kim S-M, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305CrossRefGoogle Scholar
  38. 38.
    Patil A, Nakai K, Nakamura H (2011) HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 39(1):D744–D749CrossRefGoogle Scholar
  39. 39.
    Chatr-aryamontri A, Ceol A, Palazzi LM et al (2007) MINT: the Molecular interaction database. Nucleic Acids Res 35(1):D572–D574CrossRefGoogle Scholar
  40. 40.
    Hermjakob H, Montecchi-Palazzi L, Lewington C et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455CrossRefGoogle Scholar
  41. 41.
    Prieto C, de Las Rivas J (2006) APID: agile protein interaction dataanalyzer. Nucleic Acids Res 34:W298–W302CrossRefGoogle Scholar
  42. 42.
    Bader GD, Donaldson I, Wolting C, Ouellette BFF, Pawson T, Hogue CWV (2001) BIND: the bimolecular interaction network database. Nucleic Acids Res 29(1):242–245CrossRefGoogle Scholar
  43. 43.
    Cowley MJ, Pinese M, Kassahn KS et al (2012) PINA v2. 0: mining interactome modules. Nucleic Acids Res 40:D862–D865CrossRefGoogle Scholar
  44. 44.
    Dezso Z, Oltvai ZN, Barabasi A-L (2003) Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res 13(11):2450–2454CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Praveen Tumuluru
    • 1
    Email author
  • Bhramaramba Ravi
    • 2
  • Sujatha Ch
    • 3
  1. 1.Department of Computer Science and EngineeringGITAM UniversityVisakhapatnamIndia
  2. 2.Department of Information TechnologyGITAM UniversityVisakhapatnamIndia
  3. 3.Department of Computer Science and EngineeringAcharya Nagarjuna UniversityGunturIndia

Personalised recommendations