Skip to main content

QoS Schemes for Charging Plug-in Electric Vehicles in a Smart Grid Environment

  • Chapter
  • First Online:
Plug In Electric Vehicles in Smart Grids

Part of the book series: Power Systems ((POWSYS))

Abstract

Plug-in Electric Vehicles (PEVs) are expected to greatly reduce the carbon emissions from surface transport if they are widely used and efficiently charged. One of the main limitations of PEVs is their limited range and relatively long recharging times. This limitation is closely associated with the current battery technologies used in the PEVs. In order efficiently utilize the PEVs, their charging schedules and locations must be effectively integrated within the smart grid. Real-time and reliable integration of PEVs with the smart grid could solve problems related to demand response, cost and time of charging. In this chapter, we survey the state-of-the-art in wireless communication systems for PEVs integration with smart grid, different control and wireless communication strategies. We highlight the main challenges associated with the PEV-smart grid communication system. We then propose a QoS scheme for charging PEVs (QCEV) in a smart grid environment and propose a Channel Access Control (CAC) scheme that provides QoS differentiation to PEVs that are transmitting delay critical information. Unlike conventional contention based distributed QoS approaches used by the IEEE 802.11p MAC protocol, both of the QCEV and the CAC schemes provide centralized QoS differentiation in situations where immediate PEV battery charging is required. The centralization is done at the Access Point (AP) which takes an informed decision on which PEV should receive highest priority to access the channel based on the individual PEV battery levels, and also based on the availability and cost of the electricity at different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kemp R, Blythe P, Brace C, James P, Parry-Jones R, Thielens D, Thomas M, Wenham R, Urry J (2010) Electric vehicles: charged with potential. In: Royal academy of engineering report. http://www.raeng.org.uk/publications/reports/electric-vehicles. Accessed Nov 2014

  2. Owning an electric car/electric car range (2014) http://www.owningelectriccar.com/electric-car-range.html. Accessed Feb 2014

  3. IEEE standard for information technology, local and metropolitan area networks, specific requirements part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6 (2010) Wireless access in vehicular environments. IEEE STD 80211p-2010 (amendment to IEEE STD 80211-2007 as amended by IEEE STD 80211k-2008, IEEE STD 80211r-2008, IEEE STD 80211y-2008, IEEE Std 80211n-2009, and IEEE STD 80211w-2009), pp 1–51. doi:10.1109/IEEESTD.2010.5514475

  4. IEEE standard for information technology local and metropolitan area networks specific requirements part 11 (2005) Wireless LAN medium access control (MAC) and physical layer (PHY) specifications—amendment 8: medium access control (MAC) quality of service enhancements. IEEE STD 80211e-2005 (amendment to IEEE STD 80211, 1999 edition (Reaff 2003), pp 1–212. doi:10.1109/IEEESTD.2005.97890

  5. Salem, Corvallis, Eugene (2010) Electric vehicle charging infrastructure deployment guidelines for the oregon i-5 metro areas of Portland. Technical report, Electric Transportation Engineering Corporation

    Google Scholar 

  6. Pieltain Fernandez L, Roman T, Cossent R, Domingo C, Frias P (2011) Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans Power Syst 26(1):206–213. doi:10.1109/TPWRS.2010.2049133

  7. Palensky P, Dietrich D (2011) Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans Ind Inf 7(3):381–388. doi:10.1109/TII.2011.2158841

  8. Su W, Eichi H, Zeng W, Chow MY (2012) A survey on the electrification of transportation in a smart grid environment. IEEE Trans Ind Inf 8(1):1–10. doi:10.1109/TII.2011.2172454

    Article  Google Scholar 

  9. Oldak M, Kilbourne B (2014) Communications requirements comments of utilities telecom council. http://www.energy.gov. Accessed Feb 2014

  10. Faezipour M, Nourani M, Saeed A, Addepalli S (2012) Progress and challenges in intelligent vehicle area networks. Commun ACM 55(2):90–100

    Article  Google Scholar 

  11. Huang J, Wang H, Qian Y (2012) Smart grid communications in challenging environments. In: Proceedings of the IEEE third international conference on smart grid communications (SmartGridComm), pp 552–557. doi:10.1109/SmartGridComm.2012.6486043

  12. Msadaa I, Cataldi P, Filali F (2010) A comparative study between 802.11p and mobile WiMAX-based V2I communication networks. In: Proceedings of the 4th international conference on next generation mobile applications, services and technologies (NGMAST), pp 186–191. doi:10.1109/NGMAST.2010.45

  13. Al-Anbagi I, Erol-Kantarci M, Mouftah H (2013) Priority and delay-aware medium access for wireless sensor networks in the smart grid. IEEE Syst J PP(99):1–11. doi:10.1109/JSYST.2013.2260939

  14. Al-Anbagi I, Erol-Kantarci M, Mouftah H (2013) A reliable IEEE 802.15.4 model for cyber physical power grid monitoring systems. IEEE Trans Emerg Topics Comput 1(2):258–272. doi:10.1109/TETC.2013.2281192

    Article  Google Scholar 

  15. Zafalon R, Vermesan O, Coppola G (2013) e-mobility the next frontier for automotive industry. In: Proceedings of the design, automation test in europe conference exhibition (DATE), pp 1745–1748. doi:10.7873/DATE.2013.351

  16. Conti M, Fedeli D, VirgultiM (2011) B4V2G: bluetooth for electric vehicle to smart grid connection. In: Proceedings of the of the ninth workshop on intelligent solutions in embedded systems (WISES), pp 13–18

    Google Scholar 

  17. Ferreira J, Monteiro V, Afonso J (2014) Vehicle-to-anything application (v2anything app) for electric vehicles. IEEE Trans Ind Inf pp 10(3):1927–1937. doi:10.1109/TII.2013.2291321

  18. Jansen B, Binding C, Sundstrom O, Gantenbein D (2010) Architecture and communication of an electric vehicle virtual power plant. In: Proceedings of the first IEEE international conference on smart grid communications (Smart-GridComm), pp 149–154. doi:10.1109/SMARTGRID.2010.5622033

  19. Cespedes S, Shen X (2011) A framework for ubiquitous IP communications in vehicle to grid networks. In: Proceedings of the IEEE GLOBECOM workshops (GC Wkshps), pp 1231–1235. doi:10.1109/GLOCOMW.2011.6162378

  20. Dong Q, Niyato D, Wang P, Han Z (2013) An adaptive scheduling of PHEV charging: analysis under imperfect data communication. In: Proceedings of the IEEE international conference on smart grid communications (SmartGrid-Comm), pp 205–210. doi:10.1109/SmartGridComm.2013.6687958

  21. Yuan Z, Xu H, Han H, Zhao Y (2012) Research of smart charging management system for electric vehicles based on wireless communication networks. In: Proceedings of the IEEE 6th international conference on information and automation for sustainability (ICIAfS), pp 242–247. doi:10.1109/ICIAFS.2012.6419910

  22. Erol-Kantarci M, Sarker J, Mouftah H (2011) Communication-based plug-in hybrid electrical vehicle load management in the smart grid. In: Proceedings of the IEEE symposium on computers and communications (ISCC), pp 404–409. doi:10.1109/ISCC.2011.5983871

  23. Xu DQ, Joos G, Levesque M, Maier M (2013) Integrated V2G, G2V, and renewable energy sources coordination over a converged fiber-wireless broadband access network. IEEE Trans Smart Grid 4(3):1381–1390. doi:10.1109/TSG.2013.2253337

    Article  Google Scholar 

  24. Kovacs A, Marples D, Schmidt R, Morsztyn R (2013) Integrating evs into the smart-grid. In: Proceedings of the IEEE 13th international conference on ITS telecommunications (ITST), pp 413–418

    Google Scholar 

  25. Yu R, Zhang Y, Gjessing S, XiaW, Yang K (2013) Toward cloud-based vehicular networks with efficient resource management. IEEE Netw 27(5):48–55. doi:10.1109/MNET.2013.6616115

  26. Cheung MH, Hou F, Wong V, Huang J (2012) DORA: dynamic optimal random access for vehicle-to-roadside communications. IEEE J Sel Areas Commun 30(4):792–803. doi:10.1109/JSAC.2012.120513

    Article  Google Scholar 

  27. Rezgui J, Cherkaoui S, Said D (2012) A two-way communication scheme for vehicles charging control in the smart grid. In: Proceedings of the 8th international wireless communications and mobile computing conference (IWCMC), pp 883–888. doi:10.1109/IWCMC.2012.6314321

  28. Bohm A, Jonsson M (2008) Supporting real-time data traffic in safety-critical vehicle-to-infrastructure communication. In: Proceedings of the 33rd IEEE conference on local computer networks, LCN 2008, pp 614–621. doi:10.1109/LCN.2008.4664253

  29. Luan TH, Ling X, Shen XS (2012) Provisioning QoS controlled media access in vehicular to infrastructure communications. Elsevier Ad Hoc Netw 10(2):231–242

    Article  Google Scholar 

  30. Han C, Dianati M, Tafazolli R, Kernchen R, Shen X (2012) Analytical study of the ieee 802.11p mac sublayer in vehicular networks. IEEE Trans Intell Transp Syst 13(2):873–886. doi:10.1109/TITS.2012.2183366

    Article  Google Scholar 

  31. Misic J, Badawy G, Rashwand S, Misic V (2010) Tradeoff issues for CCH/SCH duty cycle for IEEE 802.11p single channel devices. In: Proceedings of the IEEE global telecommunications conference (GLOBECOM 2010), pp 1–6. doi:10.1109/GLOCOM.2010.5684264

  32. Grafling S, Mahonen P, Riihijarvi J (2010) Performance evaluation of IEEE 1609 WAVE and IEEE 802.11p for vehicular communications. In: Proceedings of the 2nd international conference on ubiquitous and future networks (ICUFN), pp 344–348. doi:10.1109/ICUFN.2010.5547184

  33. Islam T, Hu Y, Onur E, Boltjes B, de Jongh J (2013) Realistic simulation of IEEE 802.11p channel in mobile vehicle to vehicle communication. In: Proceedings of tje conference on microwave techniques (COMITE), pp 156–161. doi:10.1109/COMITE.2013.6545061

  34. Erol-Kantarci M, Sarker J, Mouftah H (2012) Quality of service in plug-in electric vehicle charging infrastructure. In: Proceedings of the IEEE international electric vehicle conference (IEVC), pp 1–5. doi:10.1109/IEVC.2012.6183227

  35. Herrera L, Murawski R, Guo F, Inoa E, Ekici E, Wang J (2011) PHEVs charging stations, communications, and control simulation in real time. In: Proceedings of the IEEE vehicle power and propulsion conference (VPPC), pp 1–5. doi:10.1109/VPPC.2011.6043167

  36. Li J, Chigan C (2010) Delay-aware transmission range control for VANETs. In: Proceedings of the IEEE global telecommunications conference (GLOBECOM 2010), pp 1–6. doi:10.1109/GLOCOM.2010.5684168

  37. Ran B, Negeri E, Baken N, Campfens F (2013) Last-mile communication time requirements of the smart grid. In: Proceedings of the sustainable internet and ICT for sustainability (SustainIT), pp 1–6. doi:10.1109/SustainIT.2013.6685207

  38. Luan TH, Ling X, Shen XS (2012) Provisioning QoS controlled media access in vehicular to infrastructure communications. Elsevier Ad Hoc Netw 10(2):231–242

    Article  Google Scholar 

  39. Sun N (2011) Performance study of ieee 802.11 p for vehicle to vehicle communications using opnet: a thesis presented in partial fulfilment of the requirements for the degree of master of engineering in telecommunications and network. PhD thesis, Massey University, Auckland, New Zealand

    Google Scholar 

  40. Qualnet network simulator (2014) http://web.scalablenetworks.com/content/qualnet. Accessed Feb 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein T. Mouftah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Al-Anbagi, I.S., Mouftah, H.T. (2015). QoS Schemes for Charging Plug-in Electric Vehicles in a Smart Grid Environment. In: Rajakaruna, S., Shahnia, F., Ghosh, A. (eds) Plug In Electric Vehicles in Smart Grids. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-317-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-317-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-316-3

  • Online ISBN: 978-981-287-317-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics