Study of STATCOM in abc Framework

  • Juan M. Ramirez
  • Juan Miguel Gonzalez-Lopez
  • Julio C. Rosas-Caro
  • Ruben Tapia-Olvera
  • Jose M. Lozano
  • Antonio Valderrabano-Gonzalez
Part of the Power Systems book series (POWSYS)


In this chapter, the STATCOM characteristics are analyzed when it is utilized for improving the voltage stability. This chapter aims to analyze the STATCOM in the abc coordinates, and its impact over the power system under steady state and transient conditions is studied. Mathematical description of the main components is included to represent the dynamic behavior. These elements are formulated by differential equations in order to demonstrate how the STATCOM influences overall power system performance and voltage stability margins. The proposed methodology is validated on a Synchronous Machine Infinite Bus (SMIB) and on the New England test power system, which comprises 39-buses, 46-transmission lines, and 10-generators.


Power system voltage stability PV-curves STATCOM Voltage stability margin 


  1. 1.
    Taylor CW (1996) Power system voltage stability. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Padiyar KR (1995) Power system dynamics: stability and control. Wiley, New YorkGoogle Scholar
  3. 3.
    Van Cutsem T, Vournas C (1998) Voltage stability of electric power system. Kluwer, NorwellCrossRefGoogle Scholar
  4. 4.
    Chua LO, Desoer CA, Kuh ES (1987) Linear and nonlinear circuits. McGraw Hill, New YorkzbMATHGoogle Scholar
  5. 5.
    Gao B (1996) Towards the development of a systematic approach for voltage stability assessment of large-scale power systems. IEEE Trans Power Syst 11(3):1314–1324CrossRefGoogle Scholar
  6. 6.
    Van Cutsem T et al (1999) Determination of secure operating limits with respect to voltage collapse. IEEE Trans Power Syst 14(1):327–333CrossRefGoogle Scholar
  7. 7.
    IEEE/PES Power System Stability Subcommittee Special Publication (2002) Voltage stability assessment: concepts, practice and tools. IEEE/PES Final Document. ISBN 0780378695Google Scholar
  8. 8.
    IEEE/PES Power Systems Stability Subcommittee Special Publications (2001) Voltage stability assessment, procedures and guides, final draft. Accessed Dec 2013
  9. 9.
    Greene S et al (1999) Contingency ranking for voltage collapse via sensitivities from a single nose curve. IEEE Trans Power Syst 14(1):232–238CrossRefGoogle Scholar
  10. 10.
    Repo S (2001) On-line voltage stability assessment of power system-an approach of black-box modelling. Ph.D. dissertation, Tampere University of Technology, TampereGoogle Scholar
  11. 11.
    Song YH, Johns AT (1999) Flexible ac transmission system (FACTS). The Institution of Electrical Engineers, UKCrossRefGoogle Scholar
  12. 12.
    Acha E, Fuerte-Esquivel CR, Ambriz-Pérez H, Ángeles Camacho C (2006) FACTS: modelling and simulation in power network. Wiley, EnglandGoogle Scholar
  13. 13.
    Zhang XP, Xue CF, Godfrey KR (2004) Modelling of the static synchronous series compensator (SSSC) in three-phase power flow. IEE Proc Gener Transm Distrib 151(4):486–494CrossRefGoogle Scholar
  14. 14.
    Ajjarapu V, Christy C (1992) The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans Power Syst 7(1):416–423CrossRefGoogle Scholar
  15. 15.
    Mansour Y, Kundur P (1991) Voltage collapse: industry practices: control and dynamic systems. Academic Press, WalthamGoogle Scholar
  16. 16.
    Gao B, Morison GR, Kundur P (1996) Towards the development of a systematic approach for voltage stability assessment of large-scale power systems. IEEE Trans Power Syst 11(3):1314–1324CrossRefGoogle Scholar
  17. 17.
    Ramirez Juan M, Murillo-Perez José L (2006) Steady state voltage stability with STATCOM. IEEE Trans Power Syst 21(3):1453–1454CrossRefGoogle Scholar
  18. 18.
    Mansour Y (1993) Suggested techniques for voltage stability analysis. 93TH0620-5PWR, IEEE/PESGoogle Scholar
  19. 19.
    Ramírez Juan M, Murillo Jose L (2006) Three-phase voltage stability studies embedding a STATCOM. In: proceedings of the IEEE power engineering society general meeting, MontréalGoogle Scholar
  20. 20.
    Stewart William J, Jennings Allan (1981) A simultaneous iteration algorithm for real matrices. ACM Trans Math Softw 7(2):184–198CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang L, Semlyen A (1992) Application of sparse eigenvalue techniques to the small signal stability analysis of large power system. IEEE Trans Power Syst 5(2):635–642CrossRefGoogle Scholar
  22. 22.
    Martin N (1986) Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies. IEEE Trans Power Syst 1(2):217–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Juan M. Ramirez
    • 1
  • Juan Miguel Gonzalez-Lopez
    • 2
  • Julio C. Rosas-Caro
    • 3
  • Ruben Tapia-Olvera
    • 4
  • Jose M. Lozano
    • 5
  • Antonio Valderrabano-Gonzalez
    • 3
  1. 1.Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico NacionalZapopanMexico
  2. 2.Universidad Tecnologica de ManzanilloManzanilloMexico
  3. 3.Universidad Panamericana, Campus GuadalajaraZapopanMexico
  4. 4.Universidad Politecnica de TulancingoTulancingoMexico
  5. 5.Division de IngenieriasUniversidad de GuanajuatoSalamancaMexico

Personalised recommendations