Skip to main content

Wave Propagation in Auxetic Solids

  • Chapter
  • First Online:
Auxetic Materials and Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter on wave propagation forms the second part of the elastodynamics of auxetic solids. Special emphasis is placed on the effect of negative Poisson’s ratio towards the velocity of longitudinal waves in prismatic bars c 0, the velocity of plane waves of dilatation c 1, the velocities of plane waves of distortion and torsional waves c 2 and Rayleigh waves c 3. A set of dimensionless wave velocities is introduced to facilitate the plotting of non-dimensional wave velocity in both the auxetic and conventional regions. As an alternative way of non-dimensionalization , all wave velocities can be normalized against the wave velocity for plane wave of dilatation. It is herein shown that some of the velocities of different types of waves are equal at non-positive Poisson’s ratio, i.e. c 0 = c 1 at v = 0, c 0 = c 2 at v = −0.5 and c 0 = c 3 at v = −0.733. In the case of solitary waves in plates , Kołat et al. (J Non-Cryst Solids 356:2001–2009, 2010) showed that the amplitudes and velocities are approximately related to the magnitude of the Poisson’s ratio, while the width of the initial pulse is related to the number of propagating solitary pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergmann L (1948) Ultrasonics and their Scientific and Technical Applications. George Bell & Sons, London

    Google Scholar 

  • Chen CP, Lakes RS (1989) Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymer cellular materials. Cell Polym 8(5):343–369

    Google Scholar 

  • Dinh TB, Long VC, Xuan KD, Wojciechowski KW (2012) Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys Status Solidi B 249(7):1386–1392

    Google Scholar 

  • Drzewiecki A (2012) Rayleigh-type wave propagation in an auxetic dielectric. J Mech Mater Struct 7(3):277–284

    Article  Google Scholar 

  • Goldsteain RV, Goroddtsov VA, Lisovenko DS (2014) Rayleigh and love surface waves in isotropic media with negative Poisson’s ratio. Mech Solids 49(4):422–434

    Article  Google Scholar 

  • Koenders MA (2009) Wave propagation through elastic granular and granular auxetic materials. Phys Status Solidi B 246(9):2083–2088

    Article  Google Scholar 

  • Kołat P, Maruszewski BT, Wojciechowski KW (2010) Solitary waves in auxetic plates. J Non-Cryst Solids 356(37–40):2001–2009

    Google Scholar 

  • Kołat P, Maruszewski BT, Tretiakov KV, Wojciechowski KW (2011) Solitary waves in auxetic rods. Phys Status Solidi B 248(1):148–157

    Article  Google Scholar 

  • Lim TC, Cheang P, Scarpa F (2014) Wave motion in auxetic solids. Phys Status Solidi B 251(2):388–396

    Article  Google Scholar 

  • Lipsett W, Beltzer AI (1988) Reexamination of dynamic problems of elasticity for negative Poisson’s ratio. J Acoust Soc Am 84(6):2179–2186

    Article  Google Scholar 

  • Malischewsky PG (2005) Comparison of approximated solutions for the phase velocity of Rayleigh waves (Comment on ‘Characterization of surface damage via surface acoustic waves’). Nanotechnol 16(6):995–996

    Google Scholar 

  • Malischewski PG, Lorato A, Scarpa F, Ruzzene M (2012) Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys Status Solidi B 249(7):1339–1346

    Article  Google Scholar 

  • Maruszewski B, Drzewiecki A, Starosta R (2010) Magnetoelastic surface waves in auxetic structure. In: IOP conference series: materials science and engineering, vol 10, p 012160

    Google Scholar 

  • Porubov AV, Maugin GA, Mareev VV (2004) Localization of two-dimensional non-linear strain waves in a plate. Int J Non-Linear Mech 39(8):1359–1370

    Article  MATH  Google Scholar 

  • Remillat C, Wilcox P, Scarpa F (2008) Lamb wave propagation in negative Poisso’s ratio composites. Proceedings of SPIE 6935, 69350C

    Google Scholar 

  • Ruzzene M, Scarpa F (2003) Control of wave propagation in sandwich beams with auxetic core. J Intell Mater Syst Struct 14(7):443–453

    Article  Google Scholar 

  • Ruzzene M, Mazzarella L, Tsopelas P, Scarpa F (2002) Wave propagation in sandwich plates with periodic auxetic core. J Intell Mater Syst Struct 13(9):587–597

    Article  Google Scholar 

  • Scarpa F, Malischewsky PG (2008) Some new considerations concerning the Rayleigh-wave velocity in auxetic materials. Phys Status Solidi B 245(3):578–583

    Article  Google Scholar 

  • Scarpa F, Ouisse M, Collet M, Saito K (2013) Kirigami auxetic pyramidal core: mechanical properties and wave propagation analysis in damped lattice. ASME J Vib Acoust 135(4):041001

    Article  Google Scholar 

  • Scruby CB, Jones KR, Antoniazzi L (1986) Diffraction of elastic waves by defects in plates: Calculated arrival strengths for point force and thermodynamic sources of ultrasound. J Nondestruct Eval 5(3/4):145–156

    Google Scholar 

  • Spadoni A, Ruzzene M, Gonella S, Scarpa F (2009) Phononic properties of hexagonal chiral lattices. Wave Motion 46(7):435–450

    Article  MATH  MathSciNet  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, Auckland

    MATH  Google Scholar 

  • Trzupek D, Zieliński P (2009) Isolated true surface wave in a radiative band on a surface of a stressed auxetic. Phys Rev Lett 103(7):075504

    Article  Google Scholar 

  • Trzupek D, Twarog D, Zieliński P (2009) Stress induced phononic properties and surface waves in 2D model of auxetic crystal. Acta Physica Polonica 115(2):576–578

    Google Scholar 

  • Vinh PC, Malischewsky PG (2007) An approach for obtaining approximate formulas for the Rayleigh wave velocity. Wave Motion 44(7):549–562

    Article  MATH  MathSciNet  Google Scholar 

  • Vinh PC, Malischewsky PG (2008) Improved approximations for the Rayleigh wave velocity in [−1, 0.5]. Vietnam J Mech 30(4):347–358

    Google Scholar 

  • Zieliński P, Twarog D, Trzupek D (2009) On surface waves in materials with negative Poisson’s ratio. Acta Physica Polonica 115(2):513–515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lim, TC. (2015). Wave Propagation in Auxetic Solids. In: Auxetic Materials and Structures. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-275-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-275-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-274-6

  • Online ISBN: 978-981-287-275-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics