Edge of the World: When Are Manifolds Metrisable?

  • David GauldEmail author


This chapter might seem odd in that it lists a huge number of topological properties and connections between them. What it shows is that the requirement that a manifold be metrisable is extremely versatile. We list over 100 conditions each of which is equivalent to metrisability of a manifold. At one extreme, metrisability of a manifold implies that it may be embedded as a closed subset of some Euclidean space while at the other extreme knowing that every open cover of the form \(\{U_{\alpha }\ /\ {\alpha }<{\omega }_1\}\) with \(U_{\alpha }\subset U_{\beta }\) whenever \({\alpha }<{\beta }\) has an open refinement which is point countable on a dense subset is sufficient to guarantee that a manifold is metrisable. Space precludes giving full details of the proofs. Instead we give brief ideas of the proofs and refer the interested reader to original sources for complete proofs. The content of this chapter is taken from [21].


Topological Space Closed Subset Open Cover Dense Subset Countable Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Addis, D.F., Gresham, J.H.: A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff’s problem. Fund. Math. 101, 195–205 (1978)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arhangel’ski\(\breve{\rm {i}}\), A.V., Buzyakova, R.Z.: On linearly Lindelöf and strongly discretely Lindelöf spaces, Top. Proc. 23, 1–11 (Summer 1998)Google Scholar
  3. 3.
    Arhangel’ski\(\breve{\rm {i}}\), A.V., Choban, M.M.: Compactly metrizable spaces and a theorem on generalized strong \(\varSigma \)-spaces. Top. Appl. 160, 1168–1172 (2013)Google Scholar
  4. 4.
    Babinkostova, L.: Selective screenability game and covering dimension. Top. Proc. 29(1), 13–17 (2005)Google Scholar
  5. 5.
    Cao, J., Gauld, D., Greenwood, S., Mohamad, A.: Games and metrisability of manifolds. N. Z. J. Math. 37, 1–8 (2008)Google Scholar
  6. 6.
    Cao, J., Junnila, H.: When is a Volterra space Baire? Top. Appl. 154, 527–532 (2007)Google Scholar
  7. 7.
    Cao, J., Mohamad, A.: Metrizability, manifolds and hyperspace topologies. JP J. Geom. Topol. 14, 1–12 (2013)Google Scholar
  8. 8.
    Caserta, A., Di Maio, G., Kočinac, L.D.R., Meccariello, E.: Applications of k-covers II. Top. Appl. 153, 3277–3293 (2006)Google Scholar
  9. 9.
    Cohen, M.M.: Local homeomorphisms of Euclidean space onto arbitrary manifolds. Mich. J. Math. 12, 493–498 (1965)Google Scholar
  10. 10.
    Deo, S., Gauld, D.: Boundedly metacompact or finitistic spaces (to appear)Google Scholar
  11. 11.
    Di Maio, G., Kočinac, L.D.R., Meccariello, E.: Selection principles and hyperspace topologies. Top. Appl. 153, 912–923 (2005)Google Scholar
  12. 12.
    Dow, A., Zhou, J.: On subspaces of pseudoradial spaces. Proc. Amer. Math. Soc. 127, 1221–1230 (1999)Google Scholar
  13. 13.
    Fearnley, D.L.: Metrisation of Moore spaces and abstract topological manifolds. Bull. Aust. Math. Soc. 56, 395–401 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fell, J.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13, 472–476 (1962)Google Scholar
  15. 15.
    Feng, Z., Gartside, P.: Spaces with a finite family of basic functions. Bull. Lond. Math. Soc. 43, 26–32 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Forster, O.: Lectures on Riemann Surfaces. GTM 81, Springer, New York (1981)Google Scholar
  17. 17.
    Gartside, P.M., Mohamad, A.M.: Cleavability of manifolds. Top. Proc. 23, 155–166 (1998)Google Scholar
  18. 18.
    Gartside, P.M., Mohamad, A.M.: Metrizability of manifolds by diagonal properties. Top. Proc. 24, 621–640 (1999)Google Scholar
  19. 19.
    Gauld, D.: A strongly hereditarily separable, nonmetrisable manifold. Top. Appl. 51, 221–228 (1993)Google Scholar
  20. 20.
    Gauld, D.: Covering properties and metrisation of manifolds. Top. Proc. 23, 127–140 (1998)Google Scholar
  21. 21.
    Gauld, D.: Metrisability of manifolds, a developing survey found at
  22. 22.
    Gauld, D.: Selections and metrisability of manifolds. Top. Appl. 160, 2473–2481 (2013)Google Scholar
  23. 23.
    Gauld, D.: Some properties close to Lindelöf (to appear)Google Scholar
  24. 24.
    Gauld, D., Greenwood, S.: Microbundles, manifolds and metrisability. Proc. Amer. Math. Soc. 128, 2801–2807 (2000)Google Scholar
  25. 25.
    Gauld, D., Greenwood, S., Piotrowski, Z.: On Volterra spaces III: topological operations. Top. Proc. 23, 167–182 (1998)Google Scholar
  26. 26.
    Gauld, D., Mynard, F.: Metrisability of manifolds in terms of function spaces. Houst. J. Math. 31, 199–214 (2005)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Gauld, D., Vamanamurthy, M.K.: Covering properties and metrisation of manifolds 2. Top. Proc. 24, 173–185 (Summer 1999)Google Scholar
  28. 28.
    Gauld, D., van Mill, J.: Homeomorphism groups and metrisation of manifolds. N. Z. J. Math. 42, 37–43 (2012)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Gruenhage, G.: Generalized metric spaces. In: Kunen, K., Vaughan, J. (eds.) Handbook of Set-Theoretic Topology, pp. 423–501. Elsevier, Amsterdam (1984)CrossRefGoogle Scholar
  30. 30.
    Gruenhage, G.: The story of a topological game. Rocky Mountain J. Math. 36, 1885–1914 (2006)Google Scholar
  31. 31.
    Gruenhage, G., Ma, D.K.: Baireness of \(C_k(X)\) for locally compact X. Top. Appl. 80, 131–139 (1997)Google Scholar
  32. 32.
    Heath, R.W., Lutzer, D.J., Zenor, P.L.: Monotonically normal spaces. Trans. Amer. Math. Soc. 178, 481–493 (1973)Google Scholar
  33. 33.
    Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  34. 34.
    Kister, J.M.: Microbundles are fibre bundles. Ann. Math. 2(80), 190–199 (1964)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Matveev, M.V.: Some questions on property (a). Q. A. Gen. Top. 15, 103–111 (1997)Google Scholar
  36. 36.
    Milnor, J.: Microbundles part I. Topology 3(Suppl. 1), 53–80 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Mohamad, A.M.: Metrization and semimetrization theorems with applications to manifolds. Acta Math. Hung. 83(4), 383–394 (1999)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Nyikos, P.: Various smoothings of the long line and their tangent bundles. Adv. Math. 93, 129–213 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Pears, A.R.: Dimension Theory of General Spaces. Cambridge University Press, Cambridge (1975)Google Scholar
  40. 40.
    Reed, G.M., Zenor, P.L.: A metrization theorem for normal Moore spaces. In: Stavrakas, N.M., Allen, K.R. (eds.) Studies in Topology, pp. 485–488. Academic Press, New York (1974)Google Scholar
  41. 41.
    Reed, G.M., Zenor, P.L.: Metrization of Moore spaces and generalized manifolds. Fund. Math. 91, 203–210 (1976)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Scheepers, M.: Combinatorics of open covers I: Ramsey theory. Top. Appl. 69, 31–62 (1996)Google Scholar
  43. 43.
    Tkačenko, M.G.: Ob odnom svoistve bicompactov (On a property of compact spaces). Seminar po obshchei topologii (A Seminar on General Topology), pp. 149–156. Moscow State University P. H., Moscow (1981) (Russian)Google Scholar
  44. 44.
    Williams, S.W., Zhou, H.: Strong versions of normality. General topology and its applications. In: Proceedings of the 5th NE Conference, New York 1989. Lecture Notes in Pure and Applied Mathematics, vol. 134, pp. 379–389. Marcel Dekker, New York (1991)Google Scholar
  45. 45.
    Worrell Jr, J.M., Wicke, H.H.: Characterizations of developable topological spaces. Can. J. Math. 17, 820–830 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations