Atom-Precise Metal Nanoclusters

  • Anu George
  • Sukhendu Mandal
Part of the Progress in Optical Science and Photonics book series (POSP, volume 2)


A nanocrystal is a crystallite with size greater than about 2 nm. Nanoclusters are non-crystalline nanoparticles that are typically small and composed of a specific number of metal atoms in the core, which are protected by a shell of ligands. Optical properties of large metal nanoparticles in external electromagnetic fields are a function of their size, free-electron density and dielectric function relative that of the surrounding medium. The ultra-small size of nanoclusters allows them to exhibit distinct quantum confinement effects, which in turn results in their discrete electronic structure and molecular-like properties, such as HOMO-LUMO electronic transitions, enhanced photoluminescence, and intrinsic magnetism, to name a few of the characteristics. Metal nanoclusters play an important bridging role between nanochemistry and molecular chemistry. A basic understanding of the structure, electronic and optical properties, as the materials evolve from the atomic state to nanoclusters to fcc-structured nanocrystals, constitutes a major evolution across length scales, and leads to fundamental insights into the correlation between the structure and key characteristics of metal nanoclusters.


Nanocrystal Metal nanoclusters Nanostructures Quantum confinement Nanochemistry 


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Holt/Rinehart & Winston, New YorkGoogle Scholar
  3. 3.
    Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840CrossRefGoogle Scholar
  4. 4.
    Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584 (and references therein)Google Scholar
  5. 5.
    Haberland H (1994) Clusters of atoms and molecules: Theory experiment, and clusters of atoms. Springer, BerlinGoogle Scholar
  6. 6.
    Kubo R (1962) Electronic properties of metallic fine particles. J Phys Soc Jpn 17:975CrossRefGoogle Scholar
  7. 7.
    Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643CrossRefGoogle Scholar
  8. 8.
    Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499CrossRefGoogle Scholar
  9. 9.
    Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298:811CrossRefGoogle Scholar
  10. 10.
    Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H et al (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573CrossRefGoogle Scholar
  11. 11.
    Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410CrossRefGoogle Scholar
  12. 12.
    Felix C, Sieber C, Harbich W, Buttet J, Rabin I et al (2001) Ag8 fluorescence in Argon. Phys Rev Lett 86:2992CrossRefGoogle Scholar
  13. 13.
    Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409CrossRefGoogle Scholar
  14. 14.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem Commun 7:801–802Google Scholar
  15. 15.
    Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707CrossRefGoogle Scholar
  16. 16.
    Castro EG, Salvatierra RV, Schreiner WH, Oliveira MM, Zarbin AJG (2010) Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem Mater 22:360–370CrossRefGoogle Scholar
  17. 17.
    Wu ZK, Lanni E, Chen WQ, Bier ME, Ly D, Jin RC (2009) High yield, large scale synthesis of thiolate-protected Ag7 clusters. J Am Chem Soc 131:16672–16674CrossRefGoogle Scholar
  18. 18.
    Ang TP, Wee TSA, Chin WS (2004) Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J Phys Chem B 108:11001–11010CrossRefGoogle Scholar
  19. 19.
    Zhao MQ, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRefGoogle Scholar
  20. 20.
    Jin RC, Qian HF, Wu ZK, Zhu Y, Zhu MZ, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910CrossRefGoogle Scholar
  21. 21.
    Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, Zanella M, Li JK, Shen JL, Wang HH, Yeh HI, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401CrossRefGoogle Scholar
  22. 22.
    Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278CrossRefGoogle Scholar
  23. 23.
    Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:1401–1402Google Scholar
  24. 24.
    Rao TUB, Nataraju B, Pradeep T (2010) Ag9 quantum cluster through a solid–state route. J Am Chem Soc 132:16304–16307CrossRefGoogle Scholar
  25. 25.
    Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889CrossRefGoogle Scholar
  26. 26.
    Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T (2010) Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2:2769–2776CrossRefGoogle Scholar
  27. 27.
    Yan L, Cai Y, Zheng B, Yuan H, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000–1005CrossRefGoogle Scholar
  28. 28.
    Yang X, Shi M, Zhou R, Chen X, Chen H (2011) Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. Nanoscale 3:2596–2601CrossRefGoogle Scholar
  29. 29.
    Huang T, Murray R (2001) Visible luminescence of water-soluble monolayer-protected gold clusters. J Phys Chem B 105:12498–12502CrossRefGoogle Scholar
  30. 30.
    Lee D, Donkers RL, Wang G, Harper AS, Murray RW (2004) Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J Am Chem Soc 126:6193–6199CrossRefGoogle Scholar
  31. 31.
    Paau M, Lo C, Yang X, Choi M (2010) Synthesis of 1.4 nm α-cyclodextrin-protected gold nanoparticles for luminescence sensing of mercury(II) with picomolar detection limit. J Phys Chem C 114:15995–16003CrossRefGoogle Scholar
  32. 32.
    Wang Z, Cai W, Sui J (2009) Blue luminescence emitted from monodisperse thiolate-capped Au11clusters. Chem Phys Chem 10:2012–2015Google Scholar
  33. 33.
    Shang L, Dorlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 5:2009–2014CrossRefGoogle Scholar
  34. 34.
    Muhammed MAH, Ramesh S, Sinha SS, Pal SK, Pradeep T (2008) Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res 1:333–340CrossRefGoogle Scholar
  35. 35.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRefGoogle Scholar
  36. 36.
    Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145CrossRefGoogle Scholar
  37. 37.
    Gao Y (2013) Ligand effects of thiolate-protected Au102 nanoclusters. J Phys Chem C 117:8983–8988CrossRefGoogle Scholar
  38. 38.
    Huang CC, Liao HY, Shiang YC, Lin ZH, Yang Z, Chang HT (2009) Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J Mater Chem 19:755–759CrossRefGoogle Scholar
  39. 39.
    Duan H, Nie S (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J Am Chem Soc 129:2412–2413CrossRefGoogle Scholar
  40. 40.
    Li L, Li Z, Zhang H, Zhang S, Majeed I, Tan B (2013) Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale 5:1986–1992CrossRefGoogle Scholar
  41. 41.
    Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125:7780–7781CrossRefGoogle Scholar
  42. 42.
    Jao Y-C, Chen M-K, Lin S-Y (2010) Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. Chem Commun 46:2626–2628CrossRefGoogle Scholar
  43. 43.
    Bao Y, Zhong C, Vu DM, Temirov JP, Dyer RB, Martinez JS (2007) Nanoparticle-free synthesis of fluorescent gold nanoclusters at physiological temperature. J Phys Chem C 111:12194–12198CrossRefGoogle Scholar
  44. 44.
    Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S (2012) Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull 45:69–74CrossRefGoogle Scholar
  45. 45.
    Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L (2013) DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24:1–7Google Scholar
  46. 46.
    Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891CrossRefGoogle Scholar
  47. 47.
    Diez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3:1963–1970CrossRefGoogle Scholar
  48. 48.
    Li T, Zhang L, Ai J, Dong S, Wang E (2011) Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS Nano 5:6334–6338CrossRefGoogle Scholar
  49. 49.
    Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039CrossRefGoogle Scholar
  50. 50.
    Petty JT, Zheng J, Hud NV, Dickson RM (2004) DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212CrossRefGoogle Scholar
  51. 51.
    Yu J, Choi S, Richards CI, Antoku Y, Dickson RM (2008) Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem Photobiol 84:1435–1439CrossRefGoogle Scholar
  52. 52.
    Gwinn EG, O’Neill P, Guerrero AJ, Bouwmeester D, Fygenson DK (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283CrossRefGoogle Scholar
  53. 53.
    Díez I, Pusa M, Kulmala S, Jiang H, Walther AA, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125CrossRefGoogle Scholar
  54. 54.
    Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun 9:1088–1090Google Scholar
  55. 55.
    Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214CrossRefGoogle Scholar
  56. 56.
    Díez I, Jiang H, Ras RHA (2010) Enhanced emission of silver nanoclusters through quantitative phase transfer. Chem Phys Chem 11:3100–3104Google Scholar
  57. 57.
    Zhou T, Rong M, Cai Z, Yanga CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2− sensing. Nanoscale 4:4103–4106CrossRefGoogle Scholar
  58. 58.
    Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49:3925–3929CrossRefGoogle Scholar
  59. 59.
    Mrudula KV, Bhaskara Rao TU, Pradeep T (2009) Interfacial synthesis of luminescent 7 kDa silver clusters. J Mater Chem 19:4335–4342CrossRefGoogle Scholar
  60. 60.
    Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983CrossRefGoogle Scholar
  61. 61.
    Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11CrossRefGoogle Scholar
  62. 62.
    Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017CrossRefGoogle Scholar
  63. 63.
    Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866CrossRefGoogle Scholar
  64. 64.
    Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for optical detection of cyanide ion. Chem Soc Rev 39:127–137CrossRefGoogle Scholar
  65. 65.
    Holmes P, James KAF (2009) Levy LS is low-level environmental mercury exposure of concern to human health. Sci Total Environ 408:171–182CrossRefGoogle Scholar
  66. 66.
    Pyykkç P (2004) Theoretical chemistry of the gold. Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  67. 67.
    Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun 46:961–963CrossRefGoogle Scholar
  68. 68.
    Shang L, Dong SJ (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640CrossRefGoogle Scholar
  69. 69.
    Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun 13:1736–1738Google Scholar
  70. 70.
    Lan G-Y, Huang C-C, Chang H-T (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259CrossRefGoogle Scholar
  71. 71.
    Yue Y, Liu TY, Li HW, Liu Z, Wu Y (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254CrossRefGoogle Scholar
  72. 72.
    Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH (2010) Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide 2043 in water. Adv Funct Mater 20:951–956CrossRefGoogle Scholar
  73. 73.
    Wang XB, Wang YL, Yang J, Xing XP, Li J, Wang LS (2009) Evidence of significant covalent bonding in Au(CN)2. J Am Chem Soc 131:16368–16370CrossRefGoogle Scholar
  74. 74.
    Shang L, Dong S (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24:1569–1573CrossRefGoogle Scholar
  75. 75.
    Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196CrossRefGoogle Scholar
  76. 76.
    Wang Y, Wang Y, Zhou F, Kim P, Xia Y (2012) Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8:3769–3773CrossRefGoogle Scholar
  77. 77.
    Wang J, Zhang G, Li Q, Jiang H, Liu C, Amatore C, Wang X (2013) In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Sci Rep 3:1157Google Scholar
  78. 78.
    Liu C, Ho M, Chen Y, Hsieh C, Lin Y, Wang Y, Yang M, Duan H, Chen B, Lee J (2009) Thiol-functionalized gold nanodots: two-photon absorption property and imaging in vitro. J Phys Chem C 113:21082–21089CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchThiruvananthapuramIndia

Personalised recommendations