Advertisement

Raman Spectroscopy, Modeling and Simulation Studies of Carbon Nanotubes

  • Daniel Casimir
  • Raul Garcia-Sanchez
  • Prabhakar Misra
Chapter
Part of the Progress in Optical Science and Photonics book series (POSP, volume 2)

Abstract

This chapter focuses on two types of carbon nanotubes (CNTs): single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). CNTs are cylindrically-shaped carbon allotropes. They consist of a single layer of sp2-hybridized carbon atoms, giving it a hollow cylindrical shape. The majority of SWCNT samples have diameters on the order of ~1 nm and lengths on the order of microns to centimeters. MWCNTs are composed of concentric layers of SWCNTs nested inside one another, giving it a layered cylindrical shape. In the present chapter, we will provide a historical overview of CNTs and examine specifically their thermal properties as it relates to their applications to the semiconductor industry and nanoelectronics. The understanding of CNT chirality through the visualization of rolled-up graphene sheets will provide insight into the versatility and myriad thermo-mechanical and electrical properties of CNTs. We will focus on the use of Raman spectroscopy and Molecular Dynamics (MD) simulations to characterize and investigate the thermal characteristics of SWCNTs.

Keywords

Carbon nanotubes Single-walled Multi-walled Chirality Thermal properties Thermo-mechanical properties Electrical properties Graphene Raman spectroscopy Modeling Molecular Dynamics (MD) simulation 

Notes

Acknowledgments

The authors would like to acknowledge the assistance of Ms. Larkin Sayre, a rising sophomore at the Massachusetts Institute of Technology (MIT) and a 2014 Summer Research Experiences for Undergraduates (REU) in Physics participant at Howard University (NSF Grant PHY-1358727), for generating Fig. 1.

References

  1. 1.
    Radushkevich LV, Lukyanovich VM (1952) Structure of the carbon produced in the thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95Google Scholar
  2. 2.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRefGoogle Scholar
  3. 3.
    Abrahamson J, Wiles PG, Rhoades BL (1999) Structure of carbon fibers found on carbon arc anodes. Carbon 37(11): 1873Google Scholar
  4. 4.
    Nesterenko AM, Kolesnik NF, Akhmatov YuS, Suhomlin VI, Prilutskii OV (1982) Characteristics of the phase composition and structure of products of the interaction of nickel(II) and iron(III) oxide with carbon monoxide. Izevestiya Akadem ii Nauk, SSSR, Metals 3:12–17Google Scholar
  5. 5.
    Tennent HG (1987) Carbon fibrils, method for producing the same and compositions containing same. US Patent No. 4663230, 1987-05-05Google Scholar
  6. 6.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  7. 7.
    Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68:631CrossRefGoogle Scholar
  8. 8.
    Iijima S, Iohihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRefGoogle Scholar
  9. 9.
    Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic—layer walls. Nature 363(6430):605–607CrossRefGoogle Scholar
  10. 10.
    Saito R, Dresselhauss G, Dresselhauss MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  11. 11.
    Kwon YK, Berber S, Tomanek D (2004) Thermal contraction of carbon fullerenes and nanotubes. Phys Rev Lett 92:015901CrossRefGoogle Scholar
  12. 12.
    Li C, Chan TW (2005) Axial and radial thermal expansions of single-walled carbon nanotubes. Phys Rev B 71:235414CrossRefGoogle Scholar
  13. 13.
    Wong P, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Thess et al (1996) Crystalline ropes of metallic carbon Nanotubes. Science 273(5274):483–487CrossRefGoogle Scholar
  15. 15.
    Gray D, McCaughan A, MookerjCrystal B (2009) Structure of graphite, graphene and silicon. http://community.wvu.edu/~mbh039/graphene.pdf. Accessed 14 Jun 2014
  16. 16.
    Misra P, Casimir D, Garcia-Sanchez R (2013) Thermal expansion properties of single-walled carbon nanotubes by raman spectroscopy at 780 nm wavelength. OPAP 2013 proceedingsGoogle Scholar
  17. 17.
    O’Connell MJ, Sivaram S, Doorn SK (2004) Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: a direct comparison of bundled and individually dispersed HiPco nanotubes. Phys Rev B 69:235415CrossRefGoogle Scholar
  18. 18.
    Thermo scientific characterizing carbon with Raman. http://fscimage.thermoscientific.com/images/D19504~.pdf. Accessed 14 Jun 2014
  19. 19.
    Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814CrossRefGoogle Scholar
  20. 20.
    Gregan E (2009) The use of raman spectroscopy in the characterization of single walled carbon nanotubes. Doctoral Dissertation, Dublin Institute of Technology, School of PhysicsGoogle Scholar
  21. 21.
    Jorio A, Saito R, Dresselhauss G, Dresselhauss MS (2011) Raman spectroscopy in graphene related systems. Wiley-VCH Verlag GmbH and Co, KGaA, Weinheim, GermanyCrossRefGoogle Scholar
  22. 22.
    Deng L, Young RJ, Kinloch IA, Sun R, Zhang G, Noe L, Monthioux M (2014) Coefficient of thermal expansion of carbon nanotubes measured by raman spectroscopy. Appl Phys Lett 104:051907CrossRefGoogle Scholar
  23. 23.
    Raravikar et al (2002) Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys Rev B 66:235424-1–235424-9Google Scholar
  24. 24.
    Terekhov SV, Obraztsova ED, Detltlaff-Weglikowska U, Roth S, Calibration of raman-based method for estimation of carbon nanotube purity. AIP Conf Proc 685:116Google Scholar
  25. 25.
    Robertson DH, Brenner DW, Mintmire JW (1992) Progress on mechanics of carbon nanotubes and derived materials. Phys Rev B 45:12592CrossRefGoogle Scholar
  26. 26.
    Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472CrossRefGoogle Scholar
  27. 27.
    Bialoskorski M, Rybicki J (2012) Mechanical properties of single-walled carbon nanotubes simulated with airebo force-field. Comp Meth Sci Tech 18(2):67–77CrossRefGoogle Scholar
  28. 28.
    Cao G, Chen X, Kysar JW (2005) Apparent thermal contraction of single-walled carbon nanotubes. Phys Rev B 72:235404CrossRefGoogle Scholar
  29. 29.
    Jorio A, Dresselhauss G, Dresselhauss MS (eds) (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, BerlinGoogle Scholar
  30. 30.
    Rao CNR, Subrahmanyan KS, Ramakrishna Matte HSS, Govindraj A (2011) Graphene: synthesis, functionalization and properties. Mod Phy Lett 25(7):427–451CrossRefGoogle Scholar
  31. 31.
    Bagatskii MI, Barabashko MS, Dolbin AV, Sumarokov VV (2012) The specific heat and the radial thermal expansion of bundles of single-walled carbon nanotubes. Fiz Nizk Temp 38(6):667–673Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Daniel Casimir
    • 1
  • Raul Garcia-Sanchez
    • 1
  • Prabhakar Misra
    • 1
  1. 1.Department of Physics and AstronomyHoward UniversityWashington, DCUSA

Personalised recommendations