Skip to main content

In-combustion Air Emission Control

  • Chapter
  • First Online:
Book cover Air Pollution and Greenhouse Gases

Part of the book series: Green Energy and Technology ((GREEN))

  • 111k Accesses

Abstract

In-combustion air emission control is accomplished by proper design and operation of a combustion device, either a burner or an engine. The existing process of in-combustion control is primarily limiting the formation of NO x by modifying the combustion temperature and other conditions. This chapter starts with an introduction of typical combustion processes followed by specific in-combustion air emission control technologies, including low-NOx burner, sorbent injection for in furnace SO2 capture, and approaches to reduce soot formation, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Readings

  1. Abd-Alla GH (2002) Using exhaust gas recirculation in internal combustion engines: a review. Energy Convers Manag 43:1027–1042

    Article  Google Scholar 

  2. Beer JM (2000) Combustion technology developments in power generation in response to environmental challenges. Prog Energy Combust Sci 26:301–327

    Article  Google Scholar 

  3. Bockhorn H (1994) Soot formation in combustion. Springer, Berlin

    Book  Google Scholar 

  4. Bockhorn H, Schafer T (1994) Growth of soot particles in premixed flames by surface reactions. In: Bockhorn H (ed) Soot formation in combustion. Springer, Heidelberg

    Chapter  Google Scholar 

  5. Cooper CD, Alley FC (2002) Air pollution control: a design approach, 3rd edn. Waveland Press, Long Grove

    Google Scholar 

  6. Feitelberg AS, Longwell JP, Sarofim AF (1993) Metal enhanced soot and PAH formation. Combust Flame 92(3):241–253

    Article  Google Scholar 

  7. Gelencser A (2004) Carbonaceous aerosol. Springer, Berlin, pp 350

    Google Scholar 

  8. Haynes BS, HGg Wagner (1981) Soot formation. Prog Energy Combust Sci 7(4):229–273

    Google Scholar 

  9. Kim HK, Kim Y, Lee SM, Ahn KY (2007) NO reduction in 0.03–0.2 MW oxy-fuel combustor using flue gas recirculation technology. Proc Combust Inst 31:3377–3384

    Article  Google Scholar 

  10. Lyngfelt A, Leckner B (1993) SO2 capture and N2O reduction in a circulating fluidized-bed boiler: influence of temperature and air staging. Fuel 72:1553–1561

    Article  Google Scholar 

  11. Maly PM, Zamansky VM, Ho L, Payne R (1999) Alternative fuel reburning. Fuel 78:327–334

    Article  Google Scholar 

  12. Pratapas J, Bluestein J (1994) Natural gas reburn: cost effective NOx control. Power Eng 98:47–50

    Google Scholar 

  13. Smoot LD, Hill SC, Xu H (1998) NOx control through reburning. Prog Energy Combust Sci 24:385–408

    Article  Google Scholar 

  14. Smoot LD, Pratt DT (1979) Pulverized-coal combustion and gasification. Plenum Press, New York

    Book  Google Scholar 

  15. Soud H, Fukasawa K (1996) Developments in NOx abatement sand control. Report IEACR/89, IEA coal research, London, UK

    Google Scholar 

  16. Staiger B, Unterberger S, Berger R, Hein KRG (2005) Development of an air staging technology to reduce NOx emissions in grate fired boilers. Energy 30:1429–1438

    Article  Google Scholar 

  17. US DOE (1999) Technologies for the combined control of sulphur dioxide and nitrogen oxides emissions from coal-fired boilers. Clean coal technology, topical report 13, May 1999

    Google Scholar 

  18. Yrjas P, Hupa M (1997) Influence of periodically changing oxidising and reducing environment on sulfur capture under PFBC conditions. In: Proceedings of the 14th international conference on fluidised bed combustion, ASME, May 1997, Vancouver, pp 229–236

    Google Scholar 

  19. Yrjas KP, Iisa K, Hupa M (1993) Sulphur absorption capacity of different limestones and dolomited under pressurised fluidised bed combustion conditions. In: Proceedings of the 12th international conference on fluidised bed combustion, May 1993, San Diego. ASME, New York, pp 265–271

    Google Scholar 

  20. Zelenka P, Aufinger H, Reczek W, Catellieri W (1998) Cooled EGR: a key technology for future efficient HD Diesels. SAE paper 980190

    Google Scholar 

  21. Zevenhoven R, Yrjas P, Hupa M (1999) Sulphur capture under periodically changing oxidising and reducing conditions in PFBC. In: Savannah GA (ed) Proceedings of the 15th international conference on fluidised bed combustion, ASME, May 1999, pp 102

    Google Scholar 

  22. Zevenhoven R, Kilpinen P (2002) Flue gas and fuel gas, 2nd edn. Report TKK – ENY-4, The nordic energy research programme, soild fuel committees, Norway, pp 3–4

    Google Scholar 

  23. Zheng M, Reader GT, Hawley JG (2004) Diesel engine exhaust gas recirculation: a review on advanced and novel concepts. Energy Convers Manag 45:883–900

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchao Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tan, Z. (2014). In-combustion Air Emission Control. In: Air Pollution and Greenhouse Gases. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-212-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-212-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-211-1

  • Online ISBN: 978-981-287-212-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics