Variable-Centered and Person-Centered Approaches to Studying the VARK Learning Style Inventory

  • Wilfred W. F. LauEmail author
  • Allan H. K. Yuen
  • Albert Chan
Conference paper


With the increased integration of technology in education process, teachers are challenged to personalize and create interactive learning environments to fulfill students’ needs. An understanding of how an individual’s preferred learning style interacts with the instructional medium presented is needed. This study examined the VARK (visual, aural, read/write, and kinesthetic) learning style inventory using the variable-centered and person-centered approaches. Based on a sample of 807 Secondary 1 (Grade 7) students in Hong Kong, confirmatory factor analysis (CFA) using the correlated trait–correlated uniqueness (CTCU) model affirmed that the model fits the responses from the inventory well. Latent class analysis (LCA) identified five meaningful subgroups of students (all rounded (6.2 %), mediocre (16.2 %), kinesthetic oriented (21.9 %), read/write oriented (50.4 %), and uninvolved (5.3 %)).


Variable-centered approach Person-centered approach Learning style VARK Multimodality 


  1. Ainley, M., & Buckley, S. (2010). Understanding educational achievement: Person, process and content. In S. Rodrigues (Ed.), Using analytical frameworks for classroom research: Collecting data and analysing narrative (pp. 1–18). London/New York: Routledge.Google Scholar
  2. Biggs, J. B. (1987). Student approaches to learning and studying. Hawthorn: Australian Council for Educational Research.Google Scholar
  3. Coffield, F., Moseley, D., Hall, E., & Ecclestone, K. (2004). Should we be using learning styles? What research has to say to practitioners. Retrieved September 25, 2013, from
  4. Curry, L. (1983). An organization of learning styles theory and constructs. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Quebec, Canada.Google Scholar
  5. Dunn, R., Dunn, K., & Price, G. E. (1989). Learning styles inventory. Lawrence: Price Systems.Google Scholar
  6. Evans, C., & Cools, E. (2011). Applying styles research to educational practice. Learning and Individual Differences, 21(3), 249–254.CrossRefGoogle Scholar
  7. Fleming, N. D. (2001). Teaching and learning styles: VARK strategies. Christchurch: Author.Google Scholar
  8. Fleming, N. D. (2011). The VARK questionnaire. Retrieved October 3, 2013, from
  9. Grigerenko, E. L., & Sternberg, R. J. (1995). Thinking styles. In D. H. Saklofske & M. Zeidner (Eds.), International handbook of personality and intelligence (pp. 205–230). New York: Plenum Press.CrossRefGoogle Scholar
  10. Hair, J. F., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Upper Saddle River: Prentice Hall.Google Scholar
  11. Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRefGoogle Scholar
  12. Kolb, D. A. (1976). The learning styles inventory: Technical manual. Boston: McBer & Company.Google Scholar
  13. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs: Prentice-Hall.Google Scholar
  14. Lau, W. W. F., & Yuen, A. H. K. (2009). Exploring the effects of gender and learning styles on computer programming performance: Implications for programming pedagogy. British Journal of Educational Technology, 40(4), 696–712.CrossRefGoogle Scholar
  15. Lau, W. W. F., & Yuen, A. H. K. (2010). Promoting conceptual change of learning sorting algorithm through the diagnosis of mental models: The effects of gender and learning styles. Computers & Education, 54(1), 275–288.CrossRefGoogle Scholar
  16. Lau, W. W. F., & Yuen, A. H. K. (2011). Modelling programming performance: Beyond the influence of learner characteristics. Computers & Education, 57(1), 1202–1213.CrossRefGoogle Scholar
  17. Leite, W. L., Svinicki, M., & Shi, Y. (2010). Attempted validation of the scores of the VARK: Learning styles inventory with multitrait-multimethod confirmatory factor analysis models. Educational and Psychological Measurement, 70(2), 323–339.CrossRefGoogle Scholar
  18. Marton, F., & Säljö, R. (1976). On qualitative differences in learning, I: Outcome and process. British Journal of Educational Psychology, 46, 4–11.CrossRefGoogle Scholar
  19. Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50, 741–749.CrossRefGoogle Scholar
  20. Mitchell, D. P. (1994). Learning style: A critical analysis of the concept and its assessment. In R. Hoey (Ed.), Design for learning: Aspects of educational technology (pp. 5–10). London: Kogan Page.Google Scholar
  21. Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  22. Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analysis: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24(6), 882–891.CrossRefGoogle Scholar
  23. Myers, I. B. (1962). The Myers-Briggs type indicator manual. Princeton: The Educational Testing Service.CrossRefGoogle Scholar
  24. Nunnally, J. C. (1978). Psychometric theory. New York: McGraw-Hill.Google Scholar
  25. Nylund, K., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.CrossRefGoogle Scholar
  26. Pask, G., & Scott, B. C. E. (1972). Learning strategies and individual competence. International Journal of Man-Machine Studies, 4, 217–253.CrossRefGoogle Scholar
  27. Poncheri, R. M., & Ward, S. J. (2008). Personality remix: Integrating variable-centered and person-centered approaches to personality. Paper presented at the 23rd annual meeting of the Society for Industrial and Organizational Psychology, San Francisco, CA.Google Scholar
  28. Rayner, S., & Riding, R. (1997). Towards a categorisation of cognitive styles and learning styles. Educational Psychology, 17(1/2), 5–28.CrossRefGoogle Scholar
  29. Rezler, A. G., & Rezmovic, V. (1981). The learning preference inventory. Journal of Applied Health, 10, 28–34.Google Scholar
  30. Richardson, A. (1977). Verbaliser-visualiser: A cognitive style dimension. Journal of Mental Imagery, 1, 109–126.Google Scholar
  31. Riding, R. (1991). Cognitive styles analysis. Birmingham: Learning and Training Technology.Google Scholar
  32. Riding, R., & Cheema, I. (1991). Cognitive styles-an overview and integration. Educational Psychology, 11(3/4), 193–215.CrossRefGoogle Scholar
  33. Riding, R., & Rayner, S. (1998). Cognitive styles and learning strategies: Understanding style differences in learning and behaviour. London: David Fulton Publishers.Google Scholar
  34. Riding, R. J., & Taylor, E. M. (1976). Imagery performance and prose comprehension in 7 year old children. Educational Studies, 2, 21–27.CrossRefGoogle Scholar
  35. Witkin, H. A. (1962). Psychological differentiation: Studies of development. New York: Wiley.Google Scholar
  36. Witkin, H. A., & Goodenough, D. R. (1981). Cognitive styles: Essence and origins. New York: International Universities Press.Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Wilfred W. F. Lau
    • 1
    Email author
  • Allan H. K. Yuen
    • 2
  • Albert Chan
    • 1
  1. 1.Faculty of EducationThe University of Hong KongHong KongChina
  2. 2.The University of Hong KongHong KongChina

Personalised recommendations