Advertisement

Mechanical and Other Related Properties of Tropical Natural Fibre Composites

  • Mohd Sapuan Salit
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this chapter, studies on mechanical properties of selected tropical natural fibre reinforced polymer composites are presented. Banana, coconut, kenaf, oil palm, sugar palm, sugarcane and pineapple fibre reinforced polymer composites were the tropical natural fibre composites elaborated in this chapter. Tensile, flexural and impact properties were among the mechanical properties being studied. The effects of various parameters on mechanical properties of tropical natural fibre composites were investigated. These parameters include fibre contents, type of treatment agents, and fibre sizes. A section on fibre-matrix interfacial bonding including fibre treatments is also presented. Brief discussion on water absorption of natural fibre composites is also made available for the readers.

Keywords

Mechanical properties Tensile properties Flexural properties Impact properties Fibre-matrix bonding 

References

  1. 1.
    Abdelmouleh, M., Boufi, S., Belgacem, M.N., Dufresne, A.: Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 67, 1627–1639 (2007)CrossRefGoogle Scholar
  2. 2.
    Abu Bakar, M.A., Natarajan, V.D., Kalam, A., Nor Hayati, K.: Mechanical properties of oil palm fibre reinforced epoxy for building short span bridge. In: Proceedings of the 13th International Conference on Experimental Mechanics, Alexandroupolis, Greece, 1–6 July, pp. 97–98 (2007)Google Scholar
  3. 3.
    Agunsoye, J.O., Aigbodion, V.S.: Bagasse filled recycled polyethylene bio-composites: Morphological and mechanical properties study. Results Phys. 3, 187–194 (2013)CrossRefGoogle Scholar
  4. 4.
    Arib, R.M.N., Sapuan, S.M., Ahmad, M.M.H.M., Paridah, M.T., Khairul Zaman, H.M.D.: Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 27, 391–396 (2006)CrossRefGoogle Scholar
  5. 5.
    ASTM International: ASTM D123-09, Standard Terminology Relating to Textiles. ASTM International, West Conshohocken (2009)Google Scholar
  6. 6.
    Bachtiar, D.: Mechanical Properties of Alkali-Treated Sugar Palm (Arenga Pinnata) Fibre Reinforced Epoxy Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2008) Google Scholar
  7. 7.
    Bachtiar, D.: Mechanical and Thermal Properties of Short Sugar Palm (Arenga Pinnata Merr.) Fibre-Reinforced High Impact Polystyrene Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2012)Google Scholar
  8. 8.
    Boopalan, M., Niranjanaa, M., Umapathy, M.J.: Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. B Eng. 51, 54–57 (2013)CrossRefGoogle Scholar
  9. 9.
    Cao, Y., Shibata, S., Fukumoto, I.: Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. A Appl. Sci. Manuf. 37, 423–429 (2006)CrossRefGoogle Scholar
  10. 10.
    Callister, W.D.: Materials Science and Engineering: An Introduction, 7th edn. Wiley, New York (2007)Google Scholar
  11. 11.
    El-Shekeil, Y.A., Sapuan, S.M., Abdan, K., Zainudin, E.S.: Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Mater. Des. 40, 299–303 (2012)CrossRefGoogle Scholar
  12. 12.
    El-Shekeil, Y.A.: Preparation and Characterization of Kenaf Fibre Reinforced Thermoplastic Polyurethane Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2012)Google Scholar
  13. 13.
    Fang, H., Zhang, Y., Deng, J., Rodrigue, D.: Effect of fiber treatment on the water absorption and mechanical properties of hemp fiber/polyethylene composites. J. Appl. Polym. Sci. 127, 942–949 (2012)CrossRefGoogle Scholar
  14. 14.
    Fu, S.Y., Feang, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 39, 933–961 (2008)CrossRefGoogle Scholar
  15. 15.
    George, J., Bhagawan, S.S., Thomas, S.: Effect of environment on the properties of low-density polyethylene composites reinforced with pineapple fibres. Compos. Sci. Technol. 58, 1471–1485 (1998)CrossRefGoogle Scholar
  16. 16.
    Hanan, A.U.: Effect of Accelerated Weathering on Kenaf-Reinforced High Density Polyethylene Composite, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2012)Google Scholar
  17. 17.
    Ibrahim, M.S.: Physical and Thermomechanical Properties of Oil Palm Ash-Filled Unsaturated Polyester Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2012)Google Scholar
  18. 18.
    Ibrahim, A.H.: Effects of Flame-Retardant Agents on Mechanical Properties and Flammability of Impregnated Sugar Palm Fibre-Reinforced Polymer Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2013)Google Scholar
  19. 19.
    Inai, N.H.: Mechanical and Physical Properties of Hybrid Banana Pseudostem/Glass Fibre Reinforced Polyester Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2013)Google Scholar
  20. 20.
    Ishak, M.R.: Mechanical Properties of Treated and Untreated Woven Sugar Palm Fibre-Reinforced Unsaturated Polyester Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2009)Google Scholar
  21. 21.
    Ishak, M.R.: Enhancement of Physical Properties of Sugar Palm (Arenga Pinnata Merr.) Fibre-Reinforced Unsaturated Polyester Composites Via Vacuum Resin Impregnation, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2012)Google Scholar
  22. 22.
    Ishak, M.R., Sapuan, S.M., Leman, Z., Rahman, M.Z.A., Anwar, U.M.K. Siregar, J.P.: Sugar palm (Arenga pinnata): its fibres, polymers and composites. Carbohydr. Polym. 91, 699–710 (2013)Google Scholar
  23. 23.
    Jawaid, M., Abdul Khalil, H.P.S., Abu Bakar, A., Hassan, A., Dungani, R.: Effect of jute fibre loading on the mechanical and thermal properties of oil palm–epoxy composites. J. Compos. Mater. 47, 1633–1641 (2012)Google Scholar
  24. 24.
    Joseph, S., Sreekala, M.S., Oommen, Z., Koshy, P., Thomas, S.: A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 62, 1857–1868 (2002)CrossRefGoogle Scholar
  25. 25.
    Jusoh, S.M.: A Case Study on Tensile Properties and Morphology of Arenga Pinnata Fiber Reinforced Epoxy Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2006)Google Scholar
  26. 26.
    Khairiah, B., Khairul, A.M.A.: Biocomposites from oil palm resources. J. Oil Palm Res. (Special Issue), 103–113 (2006)Google Scholar
  27. 27.
    Lai, C.Y.: Mechanical Properties and Dielectric Constant of Coconut Coir-Filled Propylene, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2004)Google Scholar
  28. 28.
    Leman, Z.: Mechanical Properties of Sugar Palm Fibre-Reinforced Epoxy Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2009)Google Scholar
  29. 29.
    Liu, W., Misra, M., Askeland, P., Drzal, L.T., Mohanty, A.K.: ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46, 2710–2721 (2005)CrossRefGoogle Scholar
  30. 30.
    Mariatti, J., Abdul Khalil, H.P.S.: Properties of bagasse fibre-reinforced unsaturated polyester (USP) composites. In: Sapuan, S.M. (ed.) Research on Natural Fbre Reinforced Polymer Composites, pp. 63–83. UPM Press, Serdang (2009)Google Scholar
  31. 31.
    Morandim-Giannetti, A.A., Agnelli, J.A.M., Lancas, B., Magnabosco, R., Casarin, S.A., Bettini, S.H.P.: Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydr. Polym. 87, 2563–2568 (2012)CrossRefGoogle Scholar
  32. 32.
    Mohamed, A.R.: Physical, Mechanical and Thermal Properties of Pineapple Leaf Fibers (PALF) and PALF-Reinforced Vinyl Ester Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2010)Google Scholar
  33. 33.
    Mir, S.S., Nafsin, N., Hasan, M., Hasan, N., Hassan, A.: Improvement of physico-mechanical properties of coir polypropylene biocomposites by fibre chemical treatment. Mater. Des. 52, 251–257 (2013)CrossRefGoogle Scholar
  34. 34.
    Rashdi, A.A.A.: Moisture Absorption Capacity of Kenaf Fibre-Reinforced Unsaturated Polyester Composites and Its Effect on Their Mechanical Properties, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2010)Google Scholar
  35. 35.
    Rezali, K.A.M.: Mechanical Properties of Untraeted and Alkaline Treated-kenaf and Ramie-Fabric Reinforced Epoxy Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2008)Google Scholar
  36. 36.
    Rozman, H.D., Ahmadhilmi, K.R., Abubakar, A.: Polyurethane (PU)—oil palm empty fruit bunch (EFB) composites: the effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties. Polym. Testing 23, 559–565 (2004)CrossRefGoogle Scholar
  37. 37.
    Russo, P., Carfagna, C., Cimino, F., Acierno, D., Persico, P.: Biodegradable composites reinforced with kenaf fibers: Thermal, mechanical, and morphological issues. Adv. Polym. Technol. 32, 313–322 (2013)CrossRefGoogle Scholar
  38. 38.
    Sahari, J.: Physio-Chemical and Mechanical Properties of Different Morphological Parts of Sugar Palm Fibre Reinforced Polyester Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2011)Google Scholar
  39. 39.
    Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A.: Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater. Des. 49, 285–289 (2013)CrossRefGoogle Scholar
  40. 40.
    Sapuan, S.M., Harimi, M., Maleque, M.A.: Mechanical properties of epoxy/coconut shell filler particle composites. Arab. J. Sci. Eng. 28, 171–181 (2003)Google Scholar
  41. 41.
    Sapuan, S.M., Zan, M.N.M., Zainudin, E.S., Arora, P.R.: Tensile and flexural strengths of coconut spathe-fibre reinforced epoxy composites. J. Trop. Agric. 43, 63–65 (2005)Google Scholar
  42. 42.
    Sapuan, S.M., Leenie, A., Harimi, M., Beng, Y.K.: Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 27, 689–693Google Scholar
  43. 43.
    Sapuan, S.M., Siregar, J.P.: Mechanical properties of pineapple leaf fibre reinforced high impact polystyrene composites. In: Proceedings of the 20th Australasian Conference on the Mechanics of Structures and Materials, Toowoomba, Australia, 2–5 Dec 2008, pp. 295–299 (2008)Google Scholar
  44. 44.
    Sapuan, S.M., Pua, F., El-Shekeil, Y.A., AL-Oqla, F.N.: Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater. Des. 50, 467–470 (2013)Google Scholar
  45. 45.
    Shackelford, J.F.: Introduction to Materials Science and Engineers, 7th edn. Pearson Education Inc., Upper Saddle River (2009)Google Scholar
  46. 46.
    Siregar, J.P.: Tensile and Flexural Properties of Arenga Pinnata Filament (Ijuk Filament) Reinforced Epoxy Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2005)Google Scholar
  47. 47.
    Siregar, J.P., Sapuan, S.M.: The effect of compatabilizing agents on mechanical properties of pineapple leaf fibre (PALF) reinforced high impact polystyrene composites. Int. J. Polym. Technol. 3, 8185 (2011)Google Scholar
  48. 48.
    Siregar, J.P.: Effects of Selected Treatments on Properties of Pineapple Leaf Fibre Reinforced High Impact Polystyrene Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2011)Google Scholar
  49. 49.
    Stael, G.C., Tavares, M.I.B., d’Almeida, J.R.M.: Impact behavior of sugarcane bagasse waste–EVA composites. Polym. Testing 20, 869–872 (2001)Google Scholar
  50. 50.
    Threepopnatkul, P., Kaerkitcha, N., Athipongarporn, N.: Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos. B Eng. 40, 628–632 (2009)Google Scholar
  51. 51.
    Uma Devi, L., Bhagawan, S.S., Thomas, S.: Mechanical properties of pineapple leaf fiber reinforced polyester composites. J. Appl. Polym. Sci. 64, 1739–1748 (1997)CrossRefGoogle Scholar
  52. 52.
    Vallejos, M.E., Curvelo, A.A.S., Teixeira, E.M., Mendes, F.M., Carvalho, A.J.F., Felissia, F.E., et al.: Composite materials of thermoplastic starch and fibers from the ethanol–water fractionation of bagasse. Ind. Crops Prod. 33, 739–746 (2011)CrossRefGoogle Scholar
  53. 53.
    Venkateshwaran, N., Perumal, A.E., Alavudeen, A., Thiruchitrambalam, M.: Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 32, 4017–4021 (2011)CrossRefGoogle Scholar
  54. 54.
    Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in the fibre reinforced plastics? Compos. Sci. Technol. 63, 1259–1264 (2003)CrossRefGoogle Scholar
  55. 55.
    Wirawan, R.: Thermo-Mechanical Properties of Sugarcane Bagasse-Filled Poly(vinyl Chloride) Composites, Ph.D Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2011)Google Scholar
  56. 56.
    Wirawan, R., Sapuan, S.M., Yunus, R., Abdan, K.: The effects of thermal history on tensile properties of poly(vinyl chloride) and its composite with sugarcane bagasse. J. Thermoplast. Compos. Mater. 24, 567–579 (2011)CrossRefGoogle Scholar
  57. 57.
    Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.: Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A Appl. Sci. Manuf. 41, 806–819 (2010)CrossRefGoogle Scholar
  58. 58.
    Yusoff, M.Z.M.: Mechanical Properties of Oil Palm Fibre-Thermoset Composites, Master of Science Thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2009)Google Scholar
  59. 59.
    Zainudin, E.S., Sapuan, S.M., Abdan, K., Mohamad, M.T.M.: Mechanical properties of compression moulded banana pseudo-stem filled unplasticized polyvinyl chloride (uPVC) composites. Polym. Plast. Technol. Eng. 48, 97–101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations