Polymeric Supramolecular Hydrogels as Materials for Medicine

  • Sebastian Hackelbusch
  • Sebastian Seiffert
Part of the Series in BioEngineering book series (SERBIOENG)


This chapter describes some recent research in the field of supramolecular polymeric hydrogels. Eight examples are discussed that represent a small view of the plethora of these advanced functional materials. The examples described herein exhibit tunable physicochemical properties that allow for adjustment towards targeted applications in the biomedical field, including protein immobilization, tissue engineering, drug delivery, and dermocosmetics. The highly adaptive supramolecular polymeric hydrogels are likely to have a bright future as materials for medicine.


Supramolecular Hydrogen bonding Ionic bonding Metal complexation Adaptive materials 


  1. 1.
    Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1), 27–46 (2000). doi: 10.1016/S0939-6411(00)00090-4 Google Scholar
  2. 2.
    Hennink, W., Van Nostrum, C.: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64(3), 223–236 (2012)Google Scholar
  3. 3.
    Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)Google Scholar
  4. 4.
    Tabata, Y., Ikada, Y.: Synthesis of gelatin microspheres containing interferon. Pharm. Res. 6(5), 422–427 (1989)Google Scholar
  5. 5.
    Mather, B.D., Viswanathan, K., Miller, K.M., Long, T.E.: Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31(5), 487–531 (2006). doi: 10.1016/j.progpolymsci.2006.03.001 Google Scholar
  6. 6.
    Nandivada, H., Jiang, X., Lahann, J.: Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. 19(17), 2197–2208 (2007). doi: 10.1002/adma.200602739 Google Scholar
  7. 7.
    Langer, R., Peppas, N.: Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4), 201–214 (1981)Google Scholar
  8. 8.
    Wichterle, O., Lim, D.: Hydrophilic gels for biological use. Nature 185(4706), 117–118 (1960)Google Scholar
  9. 9.
    Oelker, A.M., Morey, S.M., Griffith, L.G., Hammond, P.T.: Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. Soft Matter 8(42), 10887–10895 (2012). doi: 10.1039/C2SM26487K Google Scholar
  10. 10.
    White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)Google Scholar
  11. 11.
    Maldonado-Codina, C., Efron, N.: Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses. Ophthalmic Physiol. Opt. 24(6), 551–561 (2004). doi: 10.1111/j.1475-1313.2004.00236.x Google Scholar
  12. 12.
    Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., Chaudhuri, O., Oh, K.H., Mooney, D.J., Vlassak, J.J., Suo, Z.: Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012).
  13. 13.
    Yiu, C., Tay, F., King, N., Pashley, D., Sidhu, S., Neo, J., Toledano, M., Wong, S.: Interaction of glass-ionomer cements with moist dentin. J. Dent. Res. 83(4), 283–289 (2004)Google Scholar
  14. 14.
    Haraguchi, K., Takehisa, T., Fan, S.: Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35(27), 10162–10171 (2002). doi: 10.1021/ma021301r Google Scholar
  15. 15.
    Goycoolea, F.M., Heras, A., Aranaz, I., Galed, G., Fernández-Valle, M.E., Argüelles-Monal, W.: Effect of chemical crosslinking on the swelling and shrinking properties of thermal and pH-responsive chitosan hydrogels. Macromol. Biosci. 3(10), 612–619 (2003). doi: 10.1002/mabi.200300011 Google Scholar
  16. 16.
    Appel, E.A., del Barrio, J., Loh, X.J., Scherman, O.A.: Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41(18), 6195–6214 (2012). doi: 10.1039/C2CS35264H Google Scholar
  17. 17.
    Brochu, A.B.W., Craig, S.L., Reichert, W.M.: Self-healing biomaterials. J. Biomed. Mater. Res., Part A 96A(2), 492–506 (2011). doi: 10.1002/jbm.a.32987 Google Scholar
  18. 18.
    van Gemert, G.M.L., Peeters, J.W., Söntjens, S.H.M., Janssen, H.M., Bosman, A.W.: Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 213(2), 234–242 (2012). doi: 10.1002/macp.201100559 Google Scholar
  19. 19.
    Phadke, A., Zhang, C., Arman, B., Hsu, C.-C., Mashelkar, R.A., Lele, A.K., Tauber, M.J., Arya, G., Varghese, S.: Rapid self-healing hydrogels. PNAS 109(12), 4383–4388 (2012)Google Scholar
  20. 20.
    Lemmers, M., Sprakel, J., Voets, I.K., van der Gucht, J., Cohen Stuart MA, : Multiresponsive reversible gels based on charge-driven assembly. Angew. Chem. Int. Ed. 49(4), 708–711 (2010). doi: 10.1002/anie.200905515 Google Scholar
  21. 21.
    Tokarev, I., Minko, S.: Stimuli-responsive hydrogel thin films. Soft Matter 5(3), 511–524 (2009)Google Scholar
  22. 22.
    Grassi, G., Farra, R., Caliceti, P., Guarnieri, G., Salmaso, S., Carenza, M., Grassi, M.: Temperature-sensitive hydrogels. Am. J. Drug Deliv. 3(4), 239–251 (2005)Google Scholar
  23. 23.
    Miyata, T., Asami, N., Uragami, T.: A reversibly antigen-responsive hydrogel. Nature 399(6738), 766–769 (1999).
  24. 24.
    Kuckling, D.: Responsive hydrogel layers—from synthesis to applications. Colloid Polym. Sci. 287(8), 881–891 (2009). doi: 10.1007/s00396-009-2060-x Google Scholar
  25. 25.
    Alves, M.H., Jensen, B.E., Smith, A.A., Zelikin, A.N.: Poly (vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol. Biosci. 11(10), 1293–1313 (2011)Google Scholar
  26. 26.
    Farris, S., Schaich, K.M., Liu, L., Piergiovanni, L., Yam, K.L.: Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci. Technol. 20(8), 316–332 (2009)Google Scholar
  27. 27.
    Geckil, H., Xu, F., Zhang, X., Moon, S., Demirci, U.: Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3), 469–484 (2010)Google Scholar
  28. 28.
    Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. (2012)Google Scholar
  29. 29.
    Kaneko, T., Yamaoka, K., Osada, Y., Gong, J.P.: Thermoresponsive shrinkage triggered by mesophase transition in liquid crystalline physical hydrogels. Macromolecules 37(14), 5385–5388 (2004)Google Scholar
  30. 30.
    Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64(Supplement), 18–23 (2012). doi: 10.1016/j.addr.2012.09.010 Google Scholar
  31. 31.
    Talei Franzesi, G., Ni, B., Ling, Y., Khademhosseini, A.: A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J. Am. Chem. Soc. 128(47), 15064–15065 (2006). doi: 10.1021/ja065867x Google Scholar
  32. 32.
    Kroll, E., Winnik, F.M., Ziolo, R.F.: In situ preparation of nanocrystalline γ-Fe2O3 in iron (II) cross-linked alginate gels. Chem. Mater. 8(8), 1594–1596 (1996)Google Scholar
  33. 33.
    Rossow, T., Hackelbusch, S., Van Assenbergh, P., Seiffert, S.: A modular construction kit for supramolecular polymer gels. Polym. Chem. 4(8), 2515–2527 (2013)Google Scholar
  34. 34.
    Krische, M., Lehn, J.-M.: The Utilization of Persistent H-Bonding Motifs in the Self-Assembly of Supramolecular Architectures. In: Fuiita, M. (ed.) Molecular Self-Assembly Organic Versus Inorganic Approaches. Structure and Bonding, vol. 96, pp. 3–29. Springer, Berlin Heidelberg (2000). doi: 10.1007/3-540-46591-X_1 Google Scholar
  35. 35.
    Steed, J.W., Atwood, J.L. The supramolecular chemistry of life. In: Supramolecular chemistry, pp. 49–104. Wiley (2009). doi: 10.1002/9780470740880.ch2
  36. 36.
    Piepenbrock, M.-O.M., Lloyd, G.O., Clarke, N., Steed, J.W.: Metal- and anion-binding supramolecular gels. Chem. Rev. 110(4), 1960–2004 (2009)Google Scholar
  37. 37.
    Schubert, U.S., Eschbaumer, C.: Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew. Chem. Int. Ed. 41(16), 2892–2926 (2002). doi: 10.1002/1521-3773(20020816)41:16<2892:AID-ANIE2892>3.0.CO;2-6 Google Scholar
  38. 38.
    Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., Gurny, R.: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 19–34 (2004)Google Scholar
  39. 39.
    Rastello De Boisseson, M., Leonard, M., Hubert, P., Marchal, P., Stequert, A., Castel, C., Favre, E., Dellacherie, E.: Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. J. Colloid Interface Sci. 273(1), 131–139 (2004)Google Scholar
  40. 40.
    Francis Suh, J.-K., Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24), 2589–2598 (2000)Google Scholar
  41. 41.
    Temenoff, J.S., Mikos, A.G.: Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5), 431–440 (2000)Google Scholar
  42. 42.
    Haag, R.: Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew. Chem. Int. Ed. 43(3), 278–282 (2004)Google Scholar
  43. 43.
    LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184–1191 (2003)Google Scholar
  44. 44.
    Giller, K.E., Witter, E., Mcgrath, S.P.: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30(10), 1389–1414 (1998)Google Scholar
  45. 45.
    Stohs, S., Bagchi, D.: Oxidative mechanisms in the toxicity of metal ions. Free Rad. Biol. Med. 18(2), 321–336 (1995)Google Scholar
  46. 46.
    Pourjavadi, A., Amini-Fazl, M.S.: Optimized synthesis of carrageenan-graft-poly (sodium acrylate) superabsorbent hydrogel using the Taguchi method and investigation of its metal ion absorption. Polym. Int. 56(2), 283–289 (2007)Google Scholar
  47. 47.
    Hirst, A.R., Escuder, B., Miravet, J.F., Smith, D.K.: High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47(42), 8002–8018 (2008)Google Scholar
  48. 48.
    Weng, W., Li, Z., Jamieson, A.M., Rowan, S.J.: Control of gel morphology and properties of a class of metallo-supramolecular polymers by good/poor solvent environments. Macromolecules 42(1), 236–246 (2008)Google Scholar
  49. 49.
    Sackmann, E., Tanaka, M.: Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 18(2), 58–64 (2000)Google Scholar
  50. 50.
    Zhang, J., Xu, S., Kumacheva, E.: Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 126(25), 7908–7914 (2004)Google Scholar
  51. 51.
    Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4(9), 3167–3192 (2011)Google Scholar
  52. 52.
    Choudhury, N.A., Ma, J., Sahai, Y., Buchheit, R.G.: High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells. J. Power Sources 196(14), 5817–5822 (2011)Google Scholar
  53. 53.
    George, M., Abraham, T.E.: Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Controlled Release 114(1), 1–14 (2006)Google Scholar
  54. 54.
    Gombotz, W.R., Wee, S.: Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3), 267–285 (1998)Google Scholar
  55. 55.
    Smidsrød, O.: Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78 (1990)Google Scholar
  56. 56.
    Djagny, K.B., Wang, Z., Xu, S.: Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit. Rev. Food Sci. Nutr. 41(6), 481–492 (2001)Google Scholar
  57. 57.
    Ishida, K., Kuroda, R., Miwa, M., Tabata, Y., Hokugo, A., Kawamoto, T., Sasaki, K., Doita, M., Kurosaka, M.: The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 13(5), 1103–1112 (2007)Google Scholar
  58. 58.
    Tabata, Y., Ikada, Y.: Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31(3), 287–301 (1998)Google Scholar
  59. 59.
    Boucard, N., Viton, C., Agay, D., Mari, E., Roger, T., Chancerelle, Y., Domard, A.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28(24), 3478–3488 (2007)Google Scholar
  60. 60.
    Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1880 (2001)Google Scholar
  61. 61.
    Ravi Kumar, M.N.: A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)Google Scholar
  62. 62.
    Dornish, M., Kaplan, D., Skaugrud, Ø.: Standards and guidelines for biopolymers in tissue-engineered medical products. Ann. N. Y. Acad. Sci. 944(1), 388–397 (2001)Google Scholar
  63. 63.
    Lewen, G., Lindsay, S., Tao, N., Weidlich, T., Graham, R., Rupprecht, A.: A mechanism for the large anisotropic swelling of DNA films. Biopolymers 25(5), 765–770 (1986)Google Scholar
  64. 64.
    Patel, P., Stripp, A., Fry, J.: Whipping test for the determination of foaming capacity of protein: a collaborative study. Int. J. Food Sci. Technol. 23(1), 57–63 (1988)Google Scholar
  65. 65.
    Brandl, F., Sommer, F., Goepferich, A.: Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28(2), 134–146 (2007)Google Scholar
  66. 66.
    Gayet, J.-C., Fortier, G.: High water content BSA-PEG hydrogel for controlled release device: evaluation of the drug release properties. J. Controlled Release 38(2), 177–184 (1996)Google Scholar
  67. 67.
    Liu Tsang, V., Bhatia, S.N.: Three-dimensional tissue fabrication. Adv. Drug Deliv. Rev. 56(11), 1635–1647 (2004)Google Scholar
  68. 68.
    Garrett, Q., Chatelier, R.C., Griesser, H.J., Milthorpe, B.K.: Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly (HEMA) hydrogels. Biomaterials 19(23), 2175–2186 (1998)Google Scholar
  69. 69.
    Montheard, J.-P., Chatzopoulos, M., Chappard, D.: 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J. Macromol. Sci. Part C Polymer Rev. 32(1), 1–34 (1992)Google Scholar
  70. 70.
    Xinming, L., Yingde, C., Lloyd, A.W., Mikhalovsky, S.V., Sandeman, S.R., Howel, C.A., Liewen, L.: Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont. Lens Anterior Eye 31(2), 57–64 (2008)Google Scholar
  71. 71.
    Rossow, T., Heyman, J.A., Ehrlicher, A.J., Langhoff, A., Weitz, D.A., Haag, R., Seiffert, S.: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. J. Am. Chem. Soc. 134(10), 4983–4989 (2012)Google Scholar
  72. 72.
    Sisson, A.L., Haag, R.: Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter 6(20), 4968–4975 (2010)Google Scholar
  73. 73.
    Sisson, A.L., Steinhilber, D., Rossow, T., Welker, P., Licha, K., Haag, R.: Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem. Int. Ed. 48(41), 7540–7545 (2009)Google Scholar
  74. 74.
    Chen, G., Jiang, M.: Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 40(5), 2254–2266 (2011)Google Scholar
  75. 75.
    Guo, M., Jiang, M., Pispas, S., Yu, W., Zhou, C.: Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and α-cyclodextrin and their hybridization with SiO2 nanoparticles through host–guest interaction. Macromolecules 41(24), 9744–9749 (2008)Google Scholar
  76. 76.
    Wang, C., Kopecek, J., Stewart, R.J.: Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules 2(3), 912–920 (2001)Google Scholar
  77. 77.
    Steed, J.W., Atwood, J.L.: Supramolecular chemistry. Wiley, Hoboken (2009)Google Scholar
  78. 78.
    Chang, C., Zhang, L.: Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84(1), 40–53 (2011)Google Scholar
  79. 79.
    Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)Google Scholar
  80. 80.
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)Google Scholar
  81. 81.
    Van Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011)Google Scholar
  82. 82.
    Fatin-Rouge, N., Milon, A., Buffle, J., Goulet, R.R., Tessier, A.: Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 107(44), 12126–12137 (2003)Google Scholar
  83. 83.
    Bock, L.: Water-soluble cellulose ethers. Ind. Eng. Chem. 29(9), 985–987 (1937)Google Scholar
  84. 84.
    Nishio, Y., Haratani, T., Takahashi, T., Manley, R.S.J.: Cellulose/poly (vinyl alcohol) blends: an estimation of thermodynamic polymer–polymer interaction by melting-point-depression analysis. Macromolecules 22(5), 2547–2549 (1989)Google Scholar
  85. 85.
    Nishio, Y., Manley, R.J.: Cellulose-poly (vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 21(5), 1270–1277 (1988)Google Scholar
  86. 86.
    Dave, V., Tamagno, M., Focher, B., Marsano, E.: Hyaluronic acid-(hydroxypropyl) cellulose blends: a solution and solid state study. Macromolecules 28(10), 3531–3539 (1995)Google Scholar
  87. 87.
    Gupta, D., Tator, C.H., Shoichet, M.S.: Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006)Google Scholar
  88. 88.
    Tuan, T.-L., Nichter, L.S.: The molecular basis of keloid and hypertrophic scar formation. Mol. Med. Today 4(1), 19–24 (1998)Google Scholar
  89. 89.
    Caicco, M.J., Zahir, T., Mothe, A.J., Ballios, B.G., Kihm, A.J., Tator, C.H., Shoichet, M.S.: Characterization of hyaluronan–methylcellulose hydrogels for cell delivery to the injured spinal cord. J. Biomed. Mater. Res. A 101A(5), 1472–1477 (2013). doi: 10.1002/jbm.a.34454 Google Scholar
  90. 90.
    Wang, Y., Lapitsky, Y., Kang, C.E., Shoichet, M.S.: Accelerated release of a sparingly soluble drug from an injectable hyaluronan–methylcellulose hydrogel. J. Controlled Release 140(3), 218–223 (2009)Google Scholar
  91. 91.
    Chang, C., Lue, A., Zhang, L.: Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol. Chem. Phys. 209(12), 1266–1273 (2008). doi: 10.1002/macp.200800161 Google Scholar
  92. 92.
    Dankers, P.Y.W., Hermans, T.M., Baughman, T.W., Kamikawa, Y., Kieltyka, R.E., Bastings, M.M.C., Janssen, H.M., Sommerdijk, N.A.J.M., Larsen, A., van Luyn, M.J.A., Bosman, A.W., Popa, E.R., Fytas, G., Meijer, E.W.: Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24(20), 2703–2709 (2012). doi: 10.1002/adma.201104072 Google Scholar
  93. 93.
    Dankers, P.Y.W., van Luyn, M.J.A., Huizinga-van der Vlag, A., van Gemert, G.M.L., Petersen, A.H., Meijer, E.W., Janssen, H.M., Bosman, A.W., Popa, E.R.: Development and in vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 33(20), 5144–5155 (2012). doi: 10.1016/j.biomaterials.2012.03.052 Google Scholar
  94. 94.
    Schubert, U.S., Winter, A., Newkome, G.R.: Chemistry and properties of terpyridine transition metal ion complexes. In: Terpyridine-based Materials, pp 65-127. Wiley-VCH Verlag GmbH & Co. KGaA (2011). doi: 10.1002/9783527639625.ch3
  95. 95.
    Weng, W., Beck, J.B., Jamieson, A.M., Rowan, S.J.: Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 128(35), 11663–11672 (2006)Google Scholar
  96. 96.
    Zhang, J., Su, C.-Y.: Metal-organic gels: from discrete metallogelators to coordination polymers. Coord. Chem. Rev. 257(7), 1373–1408 (2013)Google Scholar
  97. 97.
    Fiore, G.L., Klinkenberg, J.L., Pfister, A., Fraser, C.L.: Iron tris (bipyridine) PEG hydrogels with covalent and metal coordinate cross-links. Biomacromolecules 10(1), 128–133 (2008)Google Scholar
  98. 98.
    Rossow, T., Bayer, S., Albrecht, R., Tzschucke, C.C., Seiffert, S.: Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design. Macromol. Rapid Commun. (2013)Google Scholar
  99. 99.
    Fullenkamp, D.E., Rivera, J.G., Gong, Y.-k., Lau, K., He, L., Varshney, R., Messersmith, P.B.: Mussel-inspired silver-releasing antibacterial hydrogels. Biomaterials 33(15), 3783–3791 (2012)Google Scholar
  100. 100.
    Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9(1), 122–128 (2007)Google Scholar
  101. 101.
    Thompson, K.H., Orvig, C.: Boon and bane of metal ions in medicine. Science 300(5621), 936–939 (2003)Google Scholar
  102. 102.
    Augst, A.D., Kong, H.J., Mooney, D.J.: Alginate hydrogels as biomaterials. Macromol. Biosci. 6(8), 623–633 (2006)Google Scholar
  103. 103.
    Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N.: Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50(3), 213–224 (1999)Google Scholar
  104. 104.
    Glicksman, M.: Utilization of natural polysaccharide gums in the food industry. Adv. Food Res. 11, 109–200 (1962)Google Scholar
  105. 105.
    Glicksman, M.: Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia 151–152(1), 31–47 (1987). doi: 10.1007/BF00046103 Google Scholar
  106. 106.
    Matthew, I.R., Browne, R.M., Frame, J.W., Millar, B.G.: Subperiosteal behaviour of alginate and cellulose wound dressing materials. Biomaterials 16(4), 275–278 (1995)Google Scholar
  107. 107.
    Ashley, M., McCullagh, A., Sweet, C.: Making a good impression: (a ‘how to’ paper on dental alginate). Dent Update 32(3), 169 (2005)Google Scholar
  108. 108.
    Bratthall, G., Lindberg, P., Havemose-Poulsen, A., Holmstrup, P., Bay, L., Söderholm, G., Norderyd, O., Andersson, B., Rickardsson, B., Hallström, H., Kullendorff, B., Sköld Bell, H.: Comparison of ready-to-use EMDOGAIN®-gel and EMDOGAIN® in patients with chronic adult periodontitis. J. Clin. Periodontol. 28(10), 923–929 (2001). doi: 10.1034/j.1600-051x.2001.028010923.x Google Scholar
  109. 109.
    Tønnesen, H.H., Karlsen, J.: Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28(6), 621–630 (2002)Google Scholar
  110. 110.
    Rowley, J.A., Madlambayan, G., Mooney, D.J.: Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1), 45–53 (1999)Google Scholar
  111. 111.
    Donati, I., Cesàro, A., Paoletti, S.: Specific interactions versus counterion condensation. 1. Nongelling ions/polyuronate systems. Biomacromolecules 7(1), 281–287 (2006)Google Scholar
  112. 112.
    Topuz, F., Henke, A., Richtering, W., Groll, J.: Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter 8(18), 4877–4881 (2012)Google Scholar
  113. 113.
    Milas, M., Rinaudo, M.: The gellan sol–gel transition. Carbohydr. Polym. 30(2), 177–184 (1996)Google Scholar
  114. 114.
    Watase, M., Nishinari, K.: Effect of alkali metal ions on the viscoelasticity of concentrated kappa-carrageenan and agarose gels. Rheol. Acta 21(3), 318–324 (1982)Google Scholar
  115. 115.
    Dalsin, J.L., Hu, B.-H., Lee, B.P., Messersmith, P.B.: Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125(14), 4253–4258 (2003)Google Scholar
  116. 116.
    Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)Google Scholar
  117. 117.
    Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. PNAS 103(35), 12999–13003 (2006)Google Scholar
  118. 118.
    Lin, Q., Gourdon, D., Sun, C., Holten-Andersen, N., Anderson, T.H., Waite, J.H., Israelachvili, J.N.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. PNAS 104(10), 3782–3786 (2007)Google Scholar
  119. 119.
    Taylor, S.W., Luther III, G.W., Waite, J.H.: Polarographic and spectrophotometric investigation of iron (III) complexation to 3,4-dihydroxyphenylalanine-containing peptides and proteins from Mytilus edulis. Inorg. Chem. 33(25), 5819–5824 (1994)Google Scholar
  120. 120.
    Harrington, M.J., Masic, A., Holten-Andersen, N., Waite, J.H., Fratzl, P.: Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975), 216–220 (2010)Google Scholar
  121. 121.
    Holten-Andersen, N., Harrington, M.J., Birkedal, H., Lee, B.P., Messersmith, P.B., Lee, K.Y.C., Waite, J.H.: pH-induced metal–ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. PNAS 108(7), 2651–2655 (2011)Google Scholar
  122. 122.
    Berger, J., Reist, M., Mayer, J., Felt, O., Gurny, R.: Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 57(1), 35–52 (2004)Google Scholar
  123. 123.
    Wu, J., Su, Z.-G., Ma, G.-H.: A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 315(1), 1–11 (2006)Google Scholar
  124. 124.
    Zhang, R., Tang, M., Bowyer, A., Eisenthal, R., Hubble, J.: A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26(22), 4677–4683 (2005)Google Scholar
  125. 125.
    Pourjavadi, A., Sadeghi, M., Hosseinzadeh, H.: Modified carrageenan. 5. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym. Adv. Technol. 15(11), 645–653 (2004)Google Scholar
  126. 126.
    Bhattarai, N., Gunn, J., Zhang, M.: Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)Google Scholar
  127. 127.
    Alonso, M.J., Sánchez, A.: The potential of chitosan in ocular drug delivery. J. Pharm. Pharmacol. 55(11), 1451–1463 (2003)Google Scholar
  128. 128.
    Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M.: Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23(3), 833–840 (2002)Google Scholar
  129. 129.
    Patel, M., Mao, L., Wu, B., VandeVord, P.J.: GDNF–chitosan blended nerve guides: a functional study. J. Tissue Eng. Regen. Med. 1(5), 360–367 (2007)Google Scholar
  130. 130.
    Fujita, M., Ishihara, M., Simizu, M., Obara, K., Ishizuka, T., Saito, Y., Yura, H., Morimoto, Y., Takase, B., Matsui, T.: Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25(4), 699–706 (2004)Google Scholar
  131. 131.
    Rosalam, S., England, R.: Review of xanthan gum production from unmodified starches by Xanthomonas comprestris. Enzyme Microb. Technol. 39(2), 197–207 (2006)Google Scholar
  132. 132.
    Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T.: Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40(6), 945–948 (1992)Google Scholar
  133. 133.
    Taylor, K.C., Nasr-El-Din, H.A.: Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J. Petrol. Sci. Eng. 19(3), 265–280 (1998)Google Scholar
  134. 134.
    Katzbauer, B.: Properties and applications of xanthan gum. Polym. Degrad. Stab. 59(1), 81–84 (1998)Google Scholar
  135. 135.
    Dumitriu, S., Magny, P., Montane, D., Vidal, P., Chornet, E.: Polyionic hydrogels obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J. Bioact. Compat. Polym. 9(2), 184–209 (1994)Google Scholar
  136. 136.
    Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Magny, P., Rivard, C.H., Yahia, L.H.: In vitro and in vivo biocompatibility of chitosan–xanthan polyionic complex. J. Biomed. Mater. Res. 51(1), 107–116 (2000)Google Scholar
  137. 137.
    Chellat, F., Tabrizian, M., Dumitriu, S., Chornet, E., Rivard, C.-H., Yahia, L.: Study of biodegradation behavior of chitosan–xanthan microspheres in simulated physiological media. J. Biomed. Mater. Res. 53(5), 592–599 (2000)Google Scholar
  138. 138.
    Dumitriu, S., Chornet, E.: Immobilization of xylanase in chitosan–xanthan hydrogels. Biotechnol. Progr. 13(5), 539–545 (1997)Google Scholar
  139. 139.
    Dumitriu, S., Chornet, E., Vidal, P. Polyionic insoluble hydrogels comprising xanthan and chitosan. US Patent 5,620,706, 1997Google Scholar
  140. 140.
    Dumitriu, S., Guttmann, H., Kahane, I.: Supported polyionic hydrogels. US Patent 5,858,392, 1999Google Scholar
  141. 141.
    Magnin, D., Lefebvre, J., Chornet, E., Dumitriu, S.: Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 55(4), 437–453 (2004)Google Scholar
  142. 142.
    Tsung, M., Burgess, D.J.: Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J. Pharm. Sci. 86(5), 603–607 (1997)Google Scholar
  143. 143.
    Clark, A., Richardson, R., Ross-Murphy, S., Stubbs, J.: Structural and mechanical properties of agar/gelatin co-gels. Small-deformation studies. Macromolecules 16(8), 1367–1374 (1983)Google Scholar
  144. 144.
    Clark, A.H., Gidley, M.J., Richardson, R.K., Ross-Murphy, S.B.: Rheological studies of aqueous amylose gels: the effect of chain length and concentration on gel modulus. Macromolecules 22(1), 346–351 (1989)Google Scholar
  145. 145.
    Lange, R.F., Van Gurp, M., Meijer, E.: Hydrogen-bonded supramolecular polymer networks. J. Polym. Sci., Part A: Polym. Chem. 37(19), 3657–3670 (1999)Google Scholar
  146. 146.
    Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J., Hirschberg, J.K., Lange, R.F., Lowe, J.K., Meijer, E.: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)Google Scholar
  147. 147.
    Tschoegl, N.W.: The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin (1989)Google Scholar
  148. 148.
    Evans, G.R.: Challenges to nerve regeneration. In: Seminars in Surgical Oncology, vol. 3, pp. 312–318. Wiley Online Library (2000)Google Scholar
  149. 149.
    Belkas, J.S., Shoichet, M.S., Midha, R.: Peripheral nerve regeneration through guidance tubes. Neurol. Res. 26(2), 151–160 (2004)Google Scholar
  150. 150.
    Meek, M., Coert, J.: Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J. Reconstr. Microsurg. 18(02), 097–110 (2002)Google Scholar
  151. 151.
    Pfister, L.A., Papaloïzos, M., Merkle, H.P., Gander, B.: Hydrogel nerve conduits produced from alginate/chitosan complexes. J. Biomed. Mater. Res. A 80(4), 932–937 (2007)Google Scholar
  152. 152.
    Armstrong, J., Wenby, R., Meiselman, H., Fisher, T.: The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87(6), 4259–4270 (2004)Google Scholar
  153. 153.
    Beel, J.A., Groswald, D.E., Luttges, M.W.: Alterations in the mechanical properties of peripheral nerve following crush injury. J. Biomech. 17(3), 185–193 (1984)Google Scholar
  154. 154.
    Borschel, G.H., Kia, K.F., Kuzon Jr, W.M., Dennis, R.G.: Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114(2), 133–139 (2003)Google Scholar
  155. 155.
    Le Corre, D., Bras, J., Dufresne, A.: Starch nanoparticles: a review. Biomacromolecules 11(5), 1139–1153 (2010)Google Scholar
  156. 156.
    Leach, H.W.: Gelatinization of starch. In: Whistler, R.L., Paschall Eugene, F. (eds.) Starch: Chemistry and Technology, pp. 289–307. Academic Press, New York (1965)Google Scholar
  157. 157.
    Kartha, K., Srivastava, H.: Reaction of epichlorhydrin with carbohydrate polymers. Part II. Starch reaction mechanism and physicochemical properties of modified starch. Starch-Stärke 37(9), 297–306 (1985)Google Scholar
  158. 158.
    Kuniak, L., Marchessault, R.: Study of the crosslinking reaction between epichlorohydrin and starch. Starch-Stärke 24(4), 110–116 (1972)Google Scholar
  159. 159.
    Prado, H.J., Matulewicz, M.C., Bonelli, P.R., Cukierman, A.L.: Preparation and characterization of a novel starch-based interpolyelectrolyte complex as matrix for controlled drug release. Carbohydr. Res. 344(11), 1325–1331 (2009)Google Scholar
  160. 160.
    Capron, I., Yvon, M., Muller, G.: In vitro gastric stability of carrageenan. Food Hydrocolloids 10(2), 239–244 (1996)Google Scholar
  161. 161.
    Li, J.-Y., Yeh, A.-I.: Relationships between thermal, rheological characteristics and swelling power for various starches. J. Food Eng. 50(3), 141–148 (2001)Google Scholar
  162. 162.
    Dumitriu, S., Kahane, I., Guttmann, H.: Supported polyionic hydrogels containing biologically active material. US Patent 5,648,252, 1997Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Institute of Chemistry and BiochemistryFU BerlinBerlinGermany
  2. 2.F-ISFM Soft Matter and Functional MaterialsHelmholtz-Zentrum BerlinBerlinGermany

Personalised recommendations