Real-Time Separable Subsurface Scattering for Animated Virtual Characters

  • P. PapanikolaouEmail author
  • G. Papagiannakis


In this chapter, we present our real-time, GPU-accelerated separable subsurface scattering method for interactive, skeletal-based deformable animated virtual characters. Our screen space implementation is based on state-of-the-art algorithms, and we propose specific algorithmic and implementation extensions so that these algorithms can be employed in real-time virtual characters. We have created a physically principled real-time rendering framework, which features a series of rendering effects based on widely available open-source tools such as Open Scene Graph, C++, and GLSL so that it can be easily integrated in modern rendering engines and scene graphs via commodity graphics h/w.


Real-time rendering Separable subsurface scattering Dynamic surfaces Virtual character skin simulation 



The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 274669 and the HIFI-PRINTER Marie Curie IEF project.


  1. 1.
    Donner, C., Jensen, H.W.: A spectral BSSRDF for shading human skin. In: Proceedings of the Eurographics Symposium on Rendering Techniques, pp. 409–417 (2006)Google Scholar
  2. 2.
    Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. In: Proceedings of SIGGRAPH 2005, ACM Transactions on Graphics (2005)Google Scholar
  3. 3.
    Magnenat-Thalmann, N., Papagiannakis, G.: Virtual worlds and augmented reality in cultural heritage applications. In: Baltsavias et al (ed.) Recording, modeling and visualization of cultural heritage, pp. 419–430, ISBN-10: 041539208X, Taylor & Francis Group, 1–11 (2006)Google Scholar
  4. 4.
    Jiaping, W., Shuang, Z., Xin, T., Stephen, L., Zhouchen, L., Yue, D., Baining, G., Shum, H.-Y.: Modeling and rendering heterogeneous translucent materials using diffusion equation. ACM Trans. Graph. 27(1)Google Scholar
  5. 5.
    Yan, L.-Q., Zhou, Y., Kun, X., Wang, R.: Accurate translucent material rendering under spherical gaussian lights. Comput. Graph. Forum 31(7), 2267–2276 (2012)CrossRefGoogle Scholar
  6. 6.
    Kun, X., Gao, Y., Li, Y., Tao, J., Shi-Min, H.: Real-time homogeneous translucent material editing. Comput. Graph. Forum 26(3), 545–552 (2007)CrossRefGoogle Scholar
  7. 7.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001 (2001)Google Scholar
  8. 8.
    d’Eon, E.Luebke, D.: Advanced Techniques for Realistic Real-Time Skin Rendering. In: Nguyen, H. (ed.) GPU Gems 3, pp. 293–347. Addison-Wesley, (2007)Google Scholar
  9. 9.
    Jimenez, J., Sundstedt, V., Gutierrez, D.: Screen-space perceptual rendering of human skin. ACM Trans. Appl. Perception 6(4), 1–15 (2009)CrossRefGoogle Scholar
  10. 10.
    Kelemen, C., László, S.-K.: A microfacet based coupled specular-matte BRDF model with importance sampling. In: Presentation at Euro-graphics (2001)Google Scholar
  11. 11.
    Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. Comput. Graph. Appl. IEEE 30(4), 32–41 (2010)CrossRefGoogle Scholar
  12. 12.
    Simon, G.: Real-time approximations to subsurface scattering. In: Randima, F. (ed.) GPU Gems, pp. 263–278. Wesley, Addison (2004)Google Scholar
  13. 13.
    Hable, J., Borshukov, G., Hejl, J. Fast skin shading. In: W. Engel, (ed.) Shader X7. Charles river media, Chap. 2.4, 161–173 (2009)Google Scholar
  14. 14.
    Egges, A., Papagiannakis, G., Magnenat-Thalmann, N.: Presence and interaction in mixed reality environments. Vis. Comput. 23(5), 317–333 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of CreteHeraklionGreece
  2. 2.Foundation for Research and Technology HellasHeraklionGreece

Personalised recommendations