Advertisement

GPU-Based Real-Time Volume Interaction for Scientific Visualization Education

  • Yanlin LuoEmail author
  • Zhongke Wu
  • Zuying Luo
  • Yanhong Luo
Chapter

Abstract

In this chapter, we introduce the interaction methods of our self-developed VisEdu as a visual teaching system to teach scientific visualization courses at Beijing Normal University. VisEdu provides real-time visualization and interaction of midsize CT datasets at interactive frame rates via CUDA-based volume rendering. We describe various rendering methods through plane, superquadric, and virtual lenses tools which offer different views of the same dataset. It aids the students to better understand the feature of virtual contents and the core algorithms of the scientific visualization course such as volume rendering, volume interaction, etc.

Keywords

Scientific visualization Visual teaching system CUDA-based volume rendering Transfer function Volume interaction 

Notes

Acknowledgments

We thank the reviewers for their useful comments. The National Natural Science Foundation of China supported this work under grants No.61170170, No.61274033, and No.61271198. Also we acknowledge the help from Visual Computing Group of CRS4 in the frame of EU Marie Curie Programme under the 3DANATOMICALHUMAN project.

References

  1. 1.
    Thomas, R.J., Strothotte T.: Motion enhanced visualization in support of information fusion. In: Proceedings of International Conference on Imaging Science, Systems, and Technology, CSREA Press, Las Vegas, 492–497 (2001)Google Scholar
  2. 2.
    William, R.H., Peter, N.W.: The perception of visual information. Springer-Verlag New York, Inc., Secaucus, NJ (1997)zbMATHGoogle Scholar
  3. 3.
    Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)CrossRefGoogle Scholar
  4. 4.
    Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-time Volume Graphics. AK-Peters Publisher, Natick (2006)Google Scholar
  5. 5.
    Gobbetti, E., Marton, F., Iglesias-Guitián, J.A.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Vis. Comput. 24(7–9), 797–806 (2008)CrossRefGoogle Scholar
  6. 6.
    Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: GigaVoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 symposium on interactive 3D graphics and games, d (212), 15–22 (2009)Google Scholar
  7. 7.
    Balsa, M., Gobbetti, E., Iglesias-Guitián, J.A.: A survey of compressed GPU-based direct volume rendering. In: Eurographics (2013)Google Scholar
  8. 8.
    Haidacher, M.: Importance-driven rendering in interventional imaging, thesis (2007), http://www.cg.tuwien.ac.at/research/publications/2007/haidacher-2007-idr/
  9. 9.
    Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3), 775–782 (2009)CrossRefGoogle Scholar
  10. 10.
    McInerney, T., Broughton, S.: Hingeslicer: Interactive exploration of volume images using extended 3D slice plane widgets. In: Proceedings of Graphics Interface, Canadian Information Processing Society, 171–178 (2006)Google Scholar
  11. 11.
    Zhang, Q., Eagleson, R., Peters, T.M.: Rapid scalar value classification and volume clipping for interactive 3D medical image visualization. Vis. Comput. 27(1), 3–19 (2011)CrossRefGoogle Scholar
  12. 12.
    Bruckner, S., Groller, M.E.: VolumeShop: An interactive system for direct volume illustration. In: Proceedings of the IEEE Visualization, pp. 671–678 (2005)Google Scholar
  13. 13.
    Ropinski, T., Steinicke, F., Hinrichs, K.H.: Tentative results in focus-based medical volume visualization. In: Proceedings of the 5th International Symposium on Smart Graphics. Volume 3638 of Lecture Notes in Computer Science, Springer, 218–221 (2006)Google Scholar
  14. 14.
    Monclús, E., Díaz, J., Navazo, I., Vázquez, P.P.: The virtual magic lantern: an interaction metaphor for enhanced medical data inspection. VRST 2009, 119–122 (2009)CrossRefGoogle Scholar
  15. 15.
    Andújar, C., Navazo, I., V’azquez, P.P.: The ViRVIG Institute. SBC Journal on 3D Interactive Systems, 2(2), 2–5 (2011)Google Scholar
  16. 16.
    Bruckner, S., Groller, M.E.: Style transfer functions for illustrative volume rendering. Comput. Graph. Forum 26(3), 715–724 (2007)CrossRefGoogle Scholar
  17. 17.
    D’ıaz J., V’azquez, P.-P.: Depth-enhanced maximum intensity projection. In: IEEE/EG Volume Graphics, pp. 93–100 (2010)Google Scholar
  18. 18.
    Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization, 195–202(2000)Google Scholar
  19. 19.
    Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006)Google Scholar
  20. 20.
    Svakhine, N.A., Ebert, D.S., Andrews, and W.M.: Illustration-inspired depth enhanced volumetric medical visualization. IEEE Trans. Vis. Comput. Graph. 15(1), 77–86 (2009)Google Scholar
  21. 21.
    Van Pelt, R.F.P., Vilanova Bartroli A. and van de Wetering, H.M.M.: GPU-based particle systems for illustrative volume rendering. In: IEEE/EG International Symposium on Volume and Point-Based Graphics, pp. 89–96 (2008)Google Scholar
  22. 22.
    Ruiz, M., Boada, I., Feixas, M., Sbert, M.: Interactive volume illustration using intensity filtering. Eurographics 2010, 51–58 (2010)Google Scholar
  23. 23.
    Barr, A.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)CrossRefGoogle Scholar
  24. 24.
    Jaklic, A., Leonardis, A., Solina, F.: Segmentation and recovery of superquadrics. Volume 20 of Computational imaging and vision. Kluwer, Dordrecth (2000)Google Scholar
  25. 25.
    Schlick, C.: A fast alternative to Phong’s specular model. In: Heckbert, P.S. (ed.) Graphics Gems IV. AP Professional, Boston, pp. 385–387 (1994)Google Scholar
  26. 26.
    Gobbetti, E., Iglesias Guitián, J.A., Marton, F.: COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31, 1315–1324 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Yanlin Luo
    • 1
    Email author
  • Zhongke Wu
    • 1
  • Zuying Luo
    • 1
  • Yanhong Luo
    • 2
    • 3
  1. 1.The College of Information Science and TechnologyBeijing Normal UniversityBeijingChina
  2. 2.The College of Electrical EngineeringNorthwest University for NationalitiesLanzhouChina
  3. 3.The School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations