Advertisement

Smoothed Particle Hydrodynamics Applied to Cartilage Deformation

  • Philip BoyerEmail author
  • Sean LeBlanc
  • Chris Joslin
Chapter

Abstract

Modelling of the cartilage within the acetabulum is necessary for determination of stresses in preoperative simulation of femoral acetabular impingement (FAI), a condition that is considered a primary cause of osteoarthritis. Presented is a previously proven method for elastic solid deformation using smoothed particle hydrodynamics (SPH). Smoothed particle hydrodynamics is a mesh-free method that has advantages in computational speed and accuracy over other graphical methods and as such is attractive for medical simulations that require high degrees of precision and real-time operability. A complete formulation of the method of polar decomposition as devised for smoothed particle hydrodynamics is outlined with the inclusion of a corotational formulation for accurate rotation handling. Modifications to the existing method include boundary and collision handling using an adapted virtual particle method, as well as an algorithm for parallel implementation on the GPU using NVIDIA’s CUDA framework. The method is verified through testing with a range of material parameters within the provided elastic solid framework. Employing CUDA for calculations is found to dramatically increase the computational speed of the simulation. The results of an indenter analysis of cartilage modelled as a purely elastic solid are presented and evaluated, with the conclusion that with further refinement the presented method is promising for use in cartilage simulations.

Keywords

SPH (smoothed particle hydrodynamics) FAI (femoral acetabular impingement) Cartilage CUDA 

References

  1. 1.
    Martin, D.E., Tashman, S.: The biomechanics of femoroacetabular impingement. Oper. Tech. Orthop. 20, 248–254 (2010)CrossRefGoogle Scholar
  2. 2.
    Tannast, M., Goricki, D., Beck, M., Murphy, S.B., Siebenrock, K.A.: Hip damage occurs at the zone of femoroacetabular impingement. Clin. Orthop. Relat. Res. 466, 273–280 (2008)CrossRefGoogle Scholar
  3. 3.
    Krekel, P.R., Vochteloo, A.J.H., Bloem, R.M., Nelissen, R.G.: Femoroacetabular impingement and its implications on range of motion: a case report. J. Med. Case Rep. 5, 143 (2011)CrossRefGoogle Scholar
  4. 4.
    Asheesh, B., et al.: Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am. J. Sports Med. 39, 43S–49S (2011)CrossRefGoogle Scholar
  5. 5.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Com Graph 21, 205–214 (1987)CrossRefGoogle Scholar
  6. 6.
    Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: Proceedings of 12th IMR 103-114 (2003)Google Scholar
  7. 7.
    Maciel, A., Boulic, R., Thalmann, D.: Deformable tissue parameterized by properties of real biological tissue. Surg. Sim. Soft Tissue Model 2673, 74–87 (2003)CrossRefGoogle Scholar
  8. 8.
    Lloyd, B.A., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comp. Graph. 13, 1081–1094 (2007)CrossRefGoogle Scholar
  9. 9.
    James, D.L., Pai, D.K.: ArtDefo: accurate real time deformable objects. SIGGRAPH 1999, 65–72 (1999)Google Scholar
  10. 10.
    MeieMollemans, W., Schutyser, F., Najmi, N., Maes, F., Suetens, P.: Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med. Image Anal. 11, 282–301 (2007)CrossRefGoogle Scholar
  11. 11.
    Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings on Computer Animation, pp, 70–81 (2000)Google Scholar
  12. 12.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Programs Biomed. 105, 1–12 (2012)CrossRefGoogle Scholar
  13. 13.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86, 490–503 (1998)CrossRefGoogle Scholar
  14. 14.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph 5, 62–73 (1999)CrossRefGoogle Scholar
  15. 15.
    Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77, 183–197 (2005)CrossRefGoogle Scholar
  16. 16.
    Monaghan, J.J.: Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hieber, S.E., Koumoutsakos, P.: A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. J. Comput. Phys. 227, 9195–9215 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Müller, M., Chentanez, N.: Solid simulation with oriented particles. ACM Trans. Graph. 30(92), 1–9 (2011)CrossRefGoogle Scholar
  19. 19.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)CrossRefzbMATHGoogle Scholar
  20. 20.
    Müller, M., Charypar, D., Gross, M.: Particle-Based Fluid Simulation for Interactive Applications. In: Eurograph/SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)Google Scholar
  21. 21.
    Bao, K., Zhang, H., Zheng, L., Wu, E.: Pressure corrected SPH for fluid animation. Comput. Animat. Virtual Worlds 20, 311–320 (2009)CrossRefGoogle Scholar
  22. 22.
    Lenaerts, T., Adams, B., Dutré, P.: Porous Flow in Particle-Based Fluid Simulations. ACM Trans. Graph. 49, 1–8 (2008)CrossRefGoogle Scholar
  23. 23.
    Cleary, P.W., Das, R.: The potential for SPH modelling of solid deformation and fracture. In: IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, pp. 287–296 (2008)Google Scholar
  24. 24.
    Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comp. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., Chui, C.K.: Particle-based Simulation of blood flow and vessel wall interactions in virtual surgery. In: SolCT, pp. 128–133 (2010)Google Scholar
  26. 26.
    Mesit, J., Guha, R.K.: Experimenting with real time simulation parameters for fluid model of soft bodies. In: Proceedings of SpringSim, pp. 1–8 (2010)Google Scholar
  27. 27.
    Hieber, S.E., Walther, J.H., Koumoutsakos, P.: Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol. Health Care 12, 305–314 (2004)Google Scholar
  28. 28.
    Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 69–82 (2007)CrossRefGoogle Scholar
  29. 29.
    Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the 5th Eurographics Conference on Natural Phenomena, pp. 27–34 (2009)Google Scholar
  30. 30.
    Mow, V.C., Holmes, M.H., Lai, M.W.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)CrossRefGoogle Scholar
  31. 31.
    Korhonen, R.K., et al.: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379 (2003)CrossRefGoogle Scholar
  32. 32.
    Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6, 43–53 (2007)CrossRefGoogle Scholar
  33. 33.
    Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Vis. Comp. 24, 625–633 (2008)CrossRefGoogle Scholar
  34. 34.
    Jin, H., Lewis, J.L.: Determination of Poisson’s ratio of articular cartilage by indentation using different-sized indenters. J. Biomech. Eng. 126, 138–145 (2004)CrossRefGoogle Scholar
  35. 35.
    Müller, M. et al.: Point based animation of elastic, plastic and melting objects. In: Proceedings of SIGGRAPH Symposium on Computer Animation, pp. 141–151 (2004)Google Scholar
  36. 36.
    Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of EG Workshop on Animation and Simulation, pp. 61–76 (1996)Google Scholar
  38. 38.
    Lu, X.L., Wan, L.Q., Guo, X.E., Mow, V.C.: A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J. Biomech. 43, 673–679 (2010)CrossRefGoogle Scholar
  39. 39.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(104), 1–5 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada

Personalised recommendations