Skip to main content

Low Power Transmitter for Capsule Endoscope

  • Chapter
  • First Online:
Recent Trends in Physics of Material Science and Technology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 204))

Abstract

This chapter presents the design technique of low power transmitter for the medical application of capsule endoscope. Considering the loss against frequency in a body wireless communication, ISM band of 434 MHz is employed in the design of the transmitter. This band has lower loss and relatively higher data rate compared to other standards. Inductorless architecture was adopted in the circuit design to reduce the circuit area, thus contribute to the reduction of capsule size. The core component of transmitter, the up-conversion mixer and ring oscillator is designed using CMOS 0.13 µm technology with voltage supply of 1.2 V. Both the mixer and ring oscillator consumes 1.57 mA of current, brings the dc power consumption of the transmitter to be 1.88 mW. Data rate of 3.5 Mbps ensure it can transmit high quality medical imaging. The proposed up-conversion and ring oscillator achieved low power and less area while still having the good performance. This achievement makes circuit integration for low power transmitter realizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leighton J, Sharma V et al (2006) Capsule endoscopy versus push enteroscopy for evaluation of obscure gastrointestinal bleeding with 1-year outcomes. Dig Dis Sci 51(5):891–899

    Article  Google Scholar 

  2. Song B, Nam D et al (2010) Auto-focusing actuator and camera module including flexible diaphragm for mobile phone camera and wireless capsule endoscope. Microsyst Technol 16(1):149–159

    Article  Google Scholar 

  3. Given Imaging from http://www.givenimaging.com

  4. Swain P (2003) Wireless capsule endoscopy. Gut 52(4):48–50

    Google Scholar 

  5. Leong AFPK (2003) Wireless capsule endoscopy: light at the end of the tunnel for obscure gastrointestinal bleeding. J Singap Med Assoc 44(10):2

    Google Scholar 

  6. Lee YY, Rahim AA et al (2007) Persistent gastrointestinal bleeding after jejunal resection of a bleeding jejunal angiodysplasia. J Med Sci Res (2):51–53

    Google Scholar 

  7. Tokuhara D, Watanabe K et al (2010) Wireless capsule endoscopy in pediatric patients: the first series from Japan. J Gastroenterol 45(7):683–691

    Article  Google Scholar 

  8. Swain P (2010) At a watershed? Technical developments in wireless capsule endoscopy. J Dig Dis 11(5):259–265

    Article  MathSciNet  Google Scholar 

  9. Seibel EJ, Carroll RE et al (2008) Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus. IEEE Trans Biomed Eng 55(3):1032–1042

    Article  Google Scholar 

  10. Xinkai C, Xiaoyu Z et al (2009) A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Trans Biomed Circuits Syst 3(1):11–22

    Article  Google Scholar 

  11. Woo S, Kim T et al (2010) Stopping mechanism for capsule endoscope using electrical stimulus. Med Biol Eng Comput 48(1):97–102

    Article  Google Scholar 

  12. Sang Heun L, Jaebok L et al (2011) A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig. IEEE Trans Biomed Eng 58(6):1734–1741

    Article  Google Scholar 

  13. Yasutomi K, Itoh S, Kawahito S (2011) A two-stage charge transfer active pixel CMOS image sensor with low-noise global shuttering and a dual-shuttering mode. IEEE Trans Electron Devices, 58(3):740–747

    Google Scholar 

  14. Shafie S, Kawahito S, Itoh S (2008) A dynamic range expansion technique for CMOS image sensors with dual charge storage in a pixel and multiple sampling. Sensors 8:1915–1926

    Article  Google Scholar 

  15. Shafie S, Kawahito S (2008) A wide dynamic range CMOS image sensor with dual charge storage in a pixel and a multiple sampling technique. In: Proceedings of SPIE IS&T 2008, vol 6816-5, San Jose, California, USA, Jan 2008, pp 1–9

    Google Scholar 

  16. Shafie S, Kawahito S, Abdul Halin I, Hasan WZW (2009) Non-linearity in wide dynamic range CMOS image sensors utilizing a partial charge transfer technique. Sensors 9:9452–9467 (Switzerland)

    Google Scholar 

  17. Shafie S (2008) A study on dynamic range expansion techniques with reduced motion blur for CMOS image sensor. Dissertation, Shizuoka University

    Google Scholar 

  18. FCC (2003) MICS band plan. http://www.fcc.gov

  19. Patel M, Jianfeng W (2010) Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Commun 17(1):80–88

    Article  Google Scholar 

  20. Itoh S, Kawahito S et al (2006) A 2.6 mW 2 fps QVGA CMOS one-chip wireless camera with digital image transmission function for capsule endoscopes. In: Proceedings of IEEE international symposium on circuits and systems

    Google Scholar 

  21. Baoyong C, Jinke Y et al (2007) Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications. IEEE Trans Biomed Eng 54(7):1291–1299

    Article  Google Scholar 

  22. Jiang H, Li F, Chen X, Ning Y, Zhang X, Zhang B, Ma T, Wang Z (2010) A SoC with 3.9 mW 3 Mbps UHF transmitter and 240 μW MCU for capsule endoscope with bidirectional communication. In: Proceedings of IEEE Asian solid state circuits conference (A-SSCC), pp 1–4

    Google Scholar 

  23. Diao S, Zheng Y, Gao Y, Heng C-H, Je M (2010) A 7.2 mW 15 Mbps ASK CMOS transmitter for ingestible capsule endoscopy. In: Proceedings of IEEE Asia Pacific conference on circuits and systems (APCCAS), pp 512–515

    Google Scholar 

  24. Yuan G, Yuanjin Z et al (2011) Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Trans Biomed Eng 58(3):768–772

    Article  Google Scholar 

  25. Lei W, Drysdale TD et al (2007) In Situ characterization of two wireless transmission schemes for ingestible capsules. IEEE Trans Biomed Eng 54(11):2020–2027

    Article  Google Scholar 

  26. Thoné J, Radiom S et al (2009) Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy. Sens Actuators A 156(1):43–48

    Article  Google Scholar 

  27. Kim DK (2008) Considerations on high-data-rate in-body communications for WBAN. IEEE 802:15

    Google Scholar 

  28. Caverly R (2007) CMOS RFIC design principles. Artech House, Boston

    Google Scholar 

  29. Hajimiri A, Limotyrakis S et al (1999) Jitter and phase noise in ring oscillators. IEEE J Solid-State Circuits 34(6):790–804

    Article  Google Scholar 

  30. Tekin A, Yuce MR et al (2008) Integrated VCOs for medical implant transceivers. VLSI Des 2008(912536):10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Xing Lioe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lioe, D., Shafie, S., Ramiah, H., Sulaiman, N., Halin, I.A. (2015). Low Power Transmitter for Capsule Endoscope. In: Gaol, F., Shrivastava, K., Akhtar, J. (eds) Recent Trends in Physics of Material Science and Technology. Springer Series in Materials Science, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-287-128-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-128-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-127-5

  • Online ISBN: 978-981-287-128-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics