Skip to main content

Boundary Modeling and High-Order Convergence in Finite-Difference Methods

  • Chapter
  • First Online:
Computational Electromagnetics—Retrospective and Outlook

Abstract

High-order finite-difference methods are appealing for large-scale numerical computations, as their excellent numerical dispersion properties enable the use of coarser grids for the modeling of uniform media. However, practical problems of interest involve, in addition to uniform media, complex boundary conditions, including curved boundaries. In fact, the lack of robust methods to incorporate curved material interfaces with consistent error performance is widely considered as a significant bottleneck in the application of high-order finite-difference techniques to practical problems. The present chapter addresses this problem, revisiting the generation of conformal, high-order finite-difference methods from the perspective of transformation electromagnetics. Fundamentally based on the metric invariance property of Maxwell’s equations, transformation electromagnetics and optics has recently been employed in the design of various cloaking media, yet it presents interesting numerical applications as well. After a brief presentation of transformation-driven numerical methods, the consistent, high-order modeling of 2/3-D curved boundaries is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Krumpholz, L.P.B. Katehi, MRTD: new time-domain schemes based on multiresolution analysis. IEEE Trans. Microw. Theory Tech. 44(2), 555–571 (1996)

    Article  Google Scholar 

  2. J.S. Shang, High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153(2), 312–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. H.M. Jurgens, D.W. Zingg, Numerical solution of the time-domain maxwell equations using high-accuracy finite-difference methods. SIAM J. Sci. Comput. 22(5), 1675–1696 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Dogaru, L. Carin, Multiresolution time-domain using CDF biorthogonal wavelets. IEEE Trans. Microw. Theory Tech. 49(5), 902–912 (2001)

    Article  Google Scholar 

  5. M. Fujii, W.J.R. Hoefer, A wavelet formulation of the finite-difference method: full-vector analysis of optical waveguide junctions. IEEE J. Sel. Top. Quantum Electron. 37(8), 1015–1029 (2001)

    Article  Google Scholar 

  6. N.V. Kantartzis, T.I. Kosmanis, T.V. Yioultsis, T.D. Tsiboukis, A nonorthogonal higher-order wavelet-oriented FDTD technique for 3-D waveguide structures on generalized curvilinear grids. IEEE Trans. Magn. 37(5), 3264–3268 (2001)

    Article  Google Scholar 

  7. Z. Shao, Z. Shen, Q. He, G. Wei, A generalized higher order finite-difference time-domain method and its application in guided-wave problems. IEEE Trans. Microw. Theory Tech. 51(3), 856–861 (2003)

    Article  Google Scholar 

  8. M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media. IEEE J. Quantum Electron. 40(2), 175–182 (2004)

    Article  Google Scholar 

  9. K.P. Hwang, J.Y. Ihm, A stable fourth-order FDTD method for modeling electrically long dielectric waveguides. IEEE J. Lightwave Technol. 24(2), 1048–1056 (2006)

    Article  Google Scholar 

  10. W. Sha, Z. Huang, M. Chen, X. Wu, Survey on symplectic finite-difference time-domain schemes for maxwell’s equations. IEEE Trans. Antennas Propag. 56(2), 493–500 (2008)

    Article  MathSciNet  Google Scholar 

  11. M.F. Hadi, S.F. Mahmoud, A high-order compact-FDTD algorithm for electrically large waveguide analysis. IEEE Trans. Antennas Propag. 56(8), 2589–2598 (2008)

    Article  MathSciNet  Google Scholar 

  12. R.B. Armenta, C.D. Sarris, A general procedure for introducing structured nonorthogonal discretization grids into high-order finite-difference time-domain methods. IEEE Trans. Microw. Theory Tech. 58(7), 1818–1829 (2010)

    Article  Google Scholar 

  13. D. Cheng-Han, C. Yih-Peng, Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry. IEEE Photonics Technol. Lett. 24(11), 894–896 (2012)

    Article  Google Scholar 

  14. R.B. Armenta, C.D. Sarris, Introducing nonuniform grids into the FDTD solution of the nonuniform transmission-line equations by renormalizing the per-unit-length parameters. IEEE Trans. Electromagn. Compat. 51(3), 818–824 (2009)

    Article  Google Scholar 

  15. R.B. Armenta, C.D. Sarris, Modelling material interfaces and boundary conditions in high-order finite-difference methods. IEEE Trans. Microw. Theory Tech. 59(12), 3283–3293 (2011)

    Article  Google Scholar 

  16. R.B. Armenta, The principle of coordinate invariance and the modelling of curved material interfaces in finite difference discretisations of maxwell’s equations. Ph.D. Thesis, Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada, 2012

    Google Scholar 

  17. T.A. Driscoll, B. Fornberg, A block pseudospectral method for maxwellõs equations. I. one dimensional case. J. Comput. Phys. 140(1), 47–65 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Zhao, G.W. Wei, High-order FDTD methods via derivative matching for maxwell’s equations with material interfaces. J. Comput. Phys. 200(1), 60–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Yang, C.A. Balanis, Dielectric interface conditions for general fourth-order finite difference. IEEE Microwave Wirel. Compon. Lett. 17(8) 559–561, (2007)

    Google Scholar 

  20. T.A. Driscoll, B. Fornberg, Block pseudospectral methods for maxwell’s equations ii: two-dimensional, discontinuous-coefficient case. SIAM J. Sci. Comput. 21(3), 1146–1167 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Zhao, Full-vectorial matched interface and boundary (MIB) method for the modal analysis of dielectric waveguides. J. Lightwave Technol. 26(14), 2251–2259 (2008)

    Article  Google Scholar 

  22. T.T. Zygiridis, T.K. Katsibas, C.S. Antonopoulos, T.D. Tsiboukis, Treatment of grid-conforming dielectric interfaces in FDTD methods. IEEE Trans. Magn. 45(3), 1396–1399 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas D. Sarris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Armenta, R.B., Sarris, C.D. (2015). Boundary Modeling and High-Order Convergence in Finite-Difference Methods. In: Ahmed, I., Chen, Z. (eds) Computational Electromagnetics—Retrospective and Outlook. Springer, Singapore. https://doi.org/10.1007/978-981-287-095-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-095-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-094-0

  • Online ISBN: 978-981-287-095-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics