Skip to main content

Unconditionally Stable Fundamental Alternating Direction Implicit FDTD Method for Dispersive Media

  • Chapter
  • First Online:
Computational Electromagnetics—Retrospective and Outlook

Abstract

This chapter presents the formulation of novel unconditionally stable fundamental alternating direction implicit finite-difference time-domain (FADI-FDTD) method for dispersive media. A generalized formulation is provided, which is applicable for various dispersive models, such as Debye, Lorentz, Drude, and complex conjugate pole-residue pair models. The extension for full 3D dispersive media using novel FADI-FDTD method makes the resultant update equations much more concise and simpler than using conventional ADI-FDTD method. To demonstrate the application of novel FADI-FDTD method, the analysis of plasmonic waveguide using FADI-FDTD method is provided. The characteristics of a surface plasmon waveguides with Au (gold) and Ag (silver) metal cladding, modeled as combination of Drude-Lorentz dispersive media are analyzed. Further analysis of plasmonic waveguide grating filter is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag. 14(4), 302–307 (1966)

    MATH  MathSciNet  Google Scholar 

  2. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005)

    Google Scholar 

  3. W.J.R. Hoefer, The transmission-line matrix method–theory and applications. IEEE Trans. Microw. Theory Tech. 33(10), 882–893 (1985)

    Article  Google Scholar 

  4. W.J.R. Hoefer, The transmission-line matrix (TLM) method, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, ed. by T. Itoh (Wiley, New York, 1989)

    Google Scholar 

  5. C. Christopoulos, The Transmission-Line Modeling Method : TLM in IEEE/OUP on Electromagnetic Wave Theory Piscataway (IEEE Press, Piscataway, 1995)

    Book  Google Scholar 

  6. F. Zheng, Z. Chen, J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 48(9), 1550–1558 (2000)

    Article  Google Scholar 

  7. T. Namiki, 3-D ADI-FDTD method: unconditionally stable time-domain algorithm for solving full vector maxwell’s equations. IEEE Trans. Microw. Theory Tech. 48(10), 1743–1748 (2000)

    Article  Google Scholar 

  8. Y.-M. Lee, C.-P. Chen, Power grid transient simulation in linear time based on transmission-line-modeling alternating-direction-implicit method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(11), 1343–1352 (2002)

    Article  MathSciNet  Google Scholar 

  9. S.L Maguer, A. Peden, D. Bourreau, M.M. Ney, Split-step TLM (SS TLM)—a new scheme for accelerating electromagnetic-field simulation. IEEE Trans. Microw. Theory Tech. 52(4), 1182–1190 (2004)

    Google Scholar 

  10. S.G. Garcia, R.G. Rubio, A.R. Bretones, R.G. Martin, Extension of the ADI-FDTD method to debye media. IEEE Trans. Antennas Propag. 51(11), 3183–3186 (2003)

    Article  Google Scholar 

  11. X.T. Dong, N.V. Venkatarayalu, B. Guo, W.Y. Yin, Y.B. Gan, General formulation of unconditionally stable ADI-FDTD method in linear dispersive media. IEEE Trans. Microw. Theory Tech. 52(1), 170–174 (2004)

    Article  Google Scholar 

  12. L. Xu, N. Yuan, PLJERC-ADI-FDTD method for isotropic plasma. IEEE Microwave Wirel. Compon. Lett. 15(4), 277–279 (2005)

    Article  Google Scholar 

  13. K.-Y. Jung, F.L. Teixeira, Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures. IEEE Photonics Technol. Lett. 19(8), 586–588 (2007)

    Article  Google Scholar 

  14. J.A. Pereda, O. Gonzalez, A. Grande, A. Vegas, An alternating-direction implicit FDTD modeling of dispersive media without constitutive relation splitting. IEEE Microwave Wirel. Compon. Lett. 18(11), 719–721 (2008)

    Article  Google Scholar 

  15. O. Ramadan, General ADI-FDTD formulations for multi-term dispersive electromagnetic applications. IEEE Microwave Wirel. Compon. Lett. 21(10), 513–515 (2011)

    Article  Google Scholar 

  16. E.L. Tan, Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(1), 7–9 (2007)

    Article  Google Scholar 

  17. E.L. Tan, Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56(1), 170–177 (2008)

    Article  Google Scholar 

  18. E.L. Tan, Concise current source implementation for efficient 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(11), 748–750 (2007)

    Article  Google Scholar 

  19. K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8), 1158–1160 (2003)

    Article  Google Scholar 

  20. S.A. Maier, P.G. Kik, H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B. 67, 205402 (2003)

    Google Scholar 

  21. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Google Scholar 

  22. A. Vial, A.-S. Grimault, D. Marcias, D. Barchiesi, M.L. de La Chapelle, Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416(1)–085416(7) (2005)

    Article  Google Scholar 

  23. P.B. Johnson, R.W. Christy, Optical contants of the noble metal. Phys. Rev. B 6, 4370–4379 (1972)

    Article  Google Scholar 

  24. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  Google Scholar 

  25. D.W. Lynch, W.R. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, Orlando, 1985), pp. 350–357

    Google Scholar 

  26. Z. Han, E. Forsberg, S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19(2), 91–93 (2007)

    Article  Google Scholar 

  27. J. Shibayama, R. Takahashi, J. Yamauchi, H. Nakano, Frequency-dependent locally one-dimensional FDTD implementation with a combined dispersion model for the analysis of surface plasmon waveguides. IEEE Photonics Technol. Lett. 20(10), 824–826 (2008)

    Article  Google Scholar 

  28. J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, H. Nakano, A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices. IEEE J. Quantum Electron. 46(1), 40–49 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng Leong Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Heh, D.Y., Tan, E.L. (2015). Unconditionally Stable Fundamental Alternating Direction Implicit FDTD Method for Dispersive Media. In: Ahmed, I., Chen, Z. (eds) Computational Electromagnetics—Retrospective and Outlook. Springer, Singapore. https://doi.org/10.1007/978-981-287-095-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-095-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-094-0

  • Online ISBN: 978-981-287-095-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics