Skip to main content

Simulation and Modeling of Linear and Nonlinear PID Controller

  • Conference paper
  • First Online:
Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1440))

  • 155 Accesses

Abstract

A controller is usually employed to tune the error signal so that the output of the plant becomes equal to the reference signal. This is done based on certain sets of rules. Most of the time, P, I, D or combination of two or more controllers is preferred for linear and nonlinear system where the controller could be applied not only to control the error signal, but even it could be directly applied to the output of the plant in feedback or feed forward path as well thereby providing better response of linear and nonlinear system, thus providing more flexibility to control the output of the plant. In this paper, nonlinear gains similar to piecewise or exponential function has been introduced. They have been applied to both linear and nonlinear systems. Their responses have been presented for the best possible combination for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, B., Neevel, D., Kusik, T.: New results in NPID control: tracking, integral control, friction compensation and experimental results. IEEE Trans. Control Syst. Technol. 9(2), 837–842 (2001)

    Article  Google Scholar 

  2. Armstrong, B., Mcpherson, J., Li, Y.: Stability of nonlinear PD control. Appl. Math. Comput. Sci. 7(2), 101–120 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Astrom, K., Hagglund, T.: PID controllers: theory design and tunning, controllers. IEE Proc. Control Theory Appl. 149(2), 17–25 (1995)

    Google Scholar 

  4. Armstrong, B., Wade, B.: Nonlinear PID control with partial state space knowledge: damping with derivative. Int. Res. 18(8), 715–731 (2000)

    Google Scholar 

  5. Rudra, P.: Getting Started with MATLAB, Version-6. Oxford Press (2002)

    Google Scholar 

  6. Bialkowski, W.L.: Control of the pulp and paper making process. In: Levine, W.S. (ed.) The Control Handbook, pp. 1219–1242. IEEE Press, New York (1996)

    Google Scholar 

  7. Li, Y., Ang, K.H., Chong, G.C.Y.: PID control system analysis and design. IEEE Control Syst. Mag. 32–41 (2006)

    Google Scholar 

  8. Poulin, E., Pomerleau, A.: PID tunning for integrating and unstable processes. IEE Proc. Control Theory Appl. 143(5), 429–435 (1996)

    Article  MATH  Google Scholar 

  9. Silva, G.S., Datta, A., Bhattacharya, S.P.: PI stabilization of first order systems with time delay. Automatica 37, 2025–2031 (2001)

    Article  MATH  Google Scholar 

  10. Seraji, H.: A new class of nonlinear PID controllers for robotic applications. J. Robot. Syst. 15(3), 161–181 (1998)

    Article  MATH  Google Scholar 

  11. Shahruz, S.M., Schwartz, A.L.: Nonlinear PI compensators that achieve high performance. J. Dyn. Syst. Meas. Control 119, 105–110 (1997)

    Article  MATH  Google Scholar 

  12. Taylor, J.H., Astrom, K.J.: Nonlinear PID auto-tuning algorithm. In: Proceedings of the 1986 American Control Conference, pp. 2118–2123 (1986)

    Google Scholar 

  13. Wang, Y., Schinkel, M., Hunt, K.J.: PID and PID-like controller design by pole assignment within D-stable regions, Glasgow, pp. 1–28 (2000)

    Google Scholar 

  14. Xu, Y., Hollerbach, J.M., Ma, D.: A nonlinear PD controller for force and contact transient control. IEEE Control Mag. 15(1), 15–21 (1995)

    Google Scholar 

  15. Xu, Y., Ma, D., Hollerbach, J.M.: Nonlinear proportional and derivative control for high disturbance rejection and high gain force control. In: Proceedings of the International Conference on Robotics and Automation, pp. 752–759 (1993)

    Google Scholar 

  16. Astrom, K., Hagglund, T.: The future of PID control. Control Eng. Pract. 9, 1163–1175 (2001)

    Article  Google Scholar 

  17. Datta, A., Ho, M.T., Bhattacharya, S.P.: Structure and Synthesis of PID Controllers. Springer-Verlag (2000)

    Google Scholar 

  18. Kristiansson, B., Lennartson, B.: Robust and optimal tunning of PI and PID controllers. IEE Proc. Control Theory Appl. 149(1), 17–25 (2002)

    Article  Google Scholar 

  19. Rugh, W.J.: Design of nonlinear PID controllers. AIChE J. 33(10), 1738–1742 (1987)

    Article  Google Scholar 

  20. Shahruz, S.M., Schwartz, A.L.: Design and optimal tuning of nonlinear PI compensators. J. Optim. Theory Appl. 83(1), 181–198 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taguchi, H., Araki, M.: Optimal tuning of two degree of freedom PD controllers. In: The 4th Asian Control Conference, Singapore (2002)

    Google Scholar 

  22. Nagrath, I.J., Gopal, M.: Control Systems Engineering. New Age International

    Google Scholar 

  23. Astrom, K.J., Hagglund, T.: Advanced PID control. IEEE Control Syst. Mag. 98–101

    Google Scholar 

  24. Dantas, A.D.O.D.S., Dantas, A.F.O.D.A., Campos, J.T.L.S., Neto, D.L.D.A., Dórea, C.E.T.: PID control for electric vehicles subject to control and speed signal constraints. J. Control Sci. Eng. 1–11 (2018)

    Google Scholar 

  25. Kadu, C.B., Patel, C.Y.: Design and implementation of stable PID controller for interacting level control system. Procedia Comput. Sci. 79, 737–746 (2016)

    Article  Google Scholar 

  26. Webster, J.: The proportional integral-derivative (PID) controller. In: Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–15 (2017)

    Google Scholar 

  27. Zhang, Y., Zhang, L., Dong, Z.: An MEA-tuning method for design of the PID controller. Math. Probl. Eng. 1–11 (2019)

    Google Scholar 

  28. Rout, M.K., Sain, D., Swain, S.K., Mishra, S.K.: PID controller design for cruise control system using genetic algorithm. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 4170–4173 (2016)

    Google Scholar 

  29. Palaniyappan, T.K., Yadav, V., Ruchira, Tayal, V.K., Choudekar, P.: PID control design for a temperature control system. In: 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), G. L. Bajaj Institute of Technology and Management, Greater Noida, 13–14 Apr 2018, pp. 632–637 (2018)

    Google Scholar 

  30. Wu, H., Su, W., Liu, Z.: PID controllers: design and tuning methods. In: 2014 9th IEEE Conference on Industrial Electronics and Applications, pp. 808–813 (2014)

    Google Scholar 

  31. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Ashour, A.S., Balas, V.E.: Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA J. Autom. Sin. 6(2), 503–515 (2019). https://doi.org/10.1109/JAS.2017.7510436

    Article  Google Scholar 

  32. Rao, P.V.G.K., Subramanyam, M.V., Satyaprasad, K.: Study on PID controller design and performance based on tuning techniques. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, pp. 1411–1417 (2014). https://doi.org/10.1109/ICCICCT.2014.6993183

  33. Hirunporm, J., Siripruchyanun, M.: A fully/independently tunable voltage-mode PID controller using voltage differencing gain amplifiers with electronic method. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, pp. 131–134 (2019). https://doi.org/10.1109/TSP.2019.8768819

  34. Sajnekar, D.M., Kolhe, M.L., Deshpande, S.B., Moharil, R.M., Patidar, N.P., Ogura, K.: Design of PID controller for automatic voltage regulator and validation using hardware in the loop technique. Int. J. Smart Grid Clean Energy 7(2), 75–89 (2018)

    Google Scholar 

  35. Somwanshi, D., Bundele, M., Kumar, G., Parashar, G.: Comparison of fuzzy PID and PID controller for speed control of DC motor using LabVIEW. In: International Conference on Pervasive Computing Advances and Applications-PerCAA-2019. https://doi.org/10.1016/j.procs.2019.05.019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Pandey, V., Sharma, M., Shashikant, Sahni, M. (2023). Simulation and Modeling of Linear and Nonlinear PID Controller. In: Sahni, M., Merigó, J.M., Hussain, W., León-Castro, E., Verma, R.K., Sahni, R. (eds) Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy. Advances in Intelligent Systems and Computing, vol 1440. Springer, Singapore. https://doi.org/10.1007/978-981-19-9906-2_10

Download citation

Publish with us

Policies and ethics