Skip to main content

Robotic Spine Surgery

  • Chapter
  • First Online:
Core Techniques of Minimally Invasive Spine Surgery
  • 394 Accesses

Abstract

Minimally invasive techniques in spine surgery have continued to advance as robotic technology has evolved over several years. Although traditional pedicle screw techniques are still used widespread, new technology has increased the reliability of accurately inserting instrumentation with smaller incisions and subsequent decreased recovery times. This chapter describes the surgical techniques and operative workflow for insertion of pedicle screws with robotic technology. The robotic platform, registration, surgical planning, and placement of instrumentation are discussed in detail. We described about spine robot techniques using CUVIS-spine robot (CUREXO INC, Korea), which is the first Korean domestic spine robot and is in practice in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Connor TE, O'Hehir MM, Khan A, Mao JZ, Levy LC, Mullin JP, et al. Mazor X stealth robotic technology: a technical note. World Neurosurg. 2021;145:435–42.

    Article  PubMed  Google Scholar 

  2. Khan A, Meyers JE, Yavorek S, O'Connor TE, Siasios I, Mullin JP, et al. Comparing next-generation robotic technology with 3-dimensional computed tomography navigation Technology for the Insertion of posterior pedicle screws. World Neurosurg. 2019;123:e474–e81.

    Article  PubMed  Google Scholar 

  3. Khan A, Rho K, Mao JZ, O'Connor TE, Agyei JO, Meyers JE, et al. Comparing cortical bone trajectories for pedicle screw insertion using robotic guidance and three-dimensional computed tomography navigation. World Neurosurg. 2020;141:e625–e32.

    Article  PubMed  Google Scholar 

  4. Tian NF, Xu HZ. Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop. 2009;33(4):895–903.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007;32(3):E111–20.

    Article  PubMed  Google Scholar 

  6. Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine (Phila Pa 1976). 1993;18(15):2231–8. discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  7. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. J Bone Joint Surg Am. 1999;81(11):1519–28.

    Article  CAS  PubMed  Google Scholar 

  8. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laine T, Schlenzka D, Mäkitalo K, Tallroth K, Nolte LP, Visarius H. Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine (Phila Pa 1976). 1997;22(11):1254–8.

    Article  CAS  PubMed  Google Scholar 

  10. Winn R. Youmans and Winn Neurological Surgery, vol. 364. 8th ed. Amsterdam: Elseiver; 2022. p. 2836–41.

    Google Scholar 

  11. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.

    Article  PubMed  Google Scholar 

  12. Shin MH, Ryu KS, Park CK. Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines: comparison study between conventional C-arm fluoroscopy and navigation coupled with O-arm® guided methods. J Korean Neurosurg Soc. 2012;52(3):204–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56(3):421–33. discussion−33

    Article  PubMed  Google Scholar 

  14. Huang M, Tetreault TA, Vaishnav A, York PJ, Staub BN. The current state of navigation in robotic spine surgery. Ann Transl Med. 2021;9(1):86.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Yi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Surgical procedures using CUVIS-spine robot (MOV 1582725 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, C.K., Yi, S. (2023). Robotic Spine Surgery. In: Ahn, Y., Park, JK., Park, CK. (eds) Core Techniques of Minimally Invasive Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-19-9849-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9849-2_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9848-5

  • Online ISBN: 978-981-19-9849-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics