Skip to main content

Cyclodextrins and Cyclodextrin-Based Nanosponges for Anti-Cancer Drug and Nutraceutical Delivery

  • Chapter
  • First Online:
Targeted Cancer Therapy in Biomedical Engineering

Abstract

In recent years, cancer has been continuously considered a major problem in society, and unfortunately, cancer cells can increasingly avoid current therapies. Contemporaneously, cyclodextrins (CDs) and cyclodextrin-based nanosponges (CD-based NSs), due to their peculiar features, have acquired great significance in the controlled and/or targeted release delivery systems. CDs and CD-based NSs have been widely considered suitable delivery systems for cancer treatment. CD-based NSs are produced as a result of the chemical cross-linking of CDs. In this chapter, a brief overview of the synthesis, classification, and characterization of CD-based NSs is provided. Further, the potential of the inclusion complexes, formed between CDs and CD-based NSs and anti-cancer drugs or active nutraceuticals, is reviewed. This chapter will construct a theoretical base on existing knowledge for identifying potential gaps in future research in the field.

Graphical Abstract

Chiara Molinar and Silvia Navarro-Orcajada contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Emon, J. Bauer, Y. Jain, B. Jung, T. Saif, Biophysics of tumor microenvironment and cancer metastasis—a mini review. Comput. Struct. Biotechnol. J. 16, 279–287 (2018)

    Article  Google Scholar 

  2. G. Hoti, A. Matencio, A. Rubin Pedrazzo, C. Cecone, S.L. Appleton, Y. Khazaei Monfared, F. Caldera, F. Trotta, Nutraceutical concepts and dextrin-based delivery systems. Int. J. Mol. Sci. 23, 4102 (2022)

    Article  Google Scholar 

  3. A. Matencio, G. Hoti, Y.K. Monfared, A. Rezayat, A.R. Pedrazzo, F. Caldera, F. Trotta, Cyclodextrin monomers and polymers for drug activity enhancement. Polymers 13, 1684 (2021)

    Article  Google Scholar 

  4. A. Matencio, S. Navarro-Orcajada, F. García-Carmona, J.M. López-Nicolás, Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.08.009

  5. S.V. Kurkov, T. Loftsson, Cyclodextrins. Int. J. Pharm. 453, 167–180 (2013)

    Article  Google Scholar 

  6. A. Matencio, S. Navarro-Orcajada, A. González-Ramón, F. García-Carmona, J.M. López-Nicolás, Recent advances in the treatment of Niemann pick disease type C: a mini-review. Int. J. Pharm. 584, 119440 (2020)

    Article  Google Scholar 

  7. A.P. Sherje, B.R. Dravyakar, D. Kadam, M. Jadhav, Cyclodextrin-based nanosponges: a critical review. Carbohyd. Polym. 173, 37–49 (2017)

    Article  Google Scholar 

  8. F. Caldera, M. Tannous, R. Cavalli, M. Zanetti, F. Trotta, Evolution of cyclodextrin nanosponges. Int. J. Pharm. 531, 470–479 (2017)

    Article  Google Scholar 

  9. I. Krabicová, S.L. Appleton, M. Tannous, G. Hoti, F. Caldera, A. Rubin Pedrazzo, C. Cecone, R. Cavalli, F. Trotta, History of cyclodextrin nanosponges. Polymers (Basel) (2020). https://doi.org/10.3390/polym12051122

    Article  Google Scholar 

  10. P. Shende, Y.A. Kulkarni, R.S. Gaud, K. Deshmukh, R. Cavalli, F. Trotta, F. Caldera, Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J. Pharm. Sci. 104, 1856–1863 (2015)

    Article  Google Scholar 

  11. A. Matencio, M.A. Guerrero-Rubio, F. Caldera, C. Cecone, F. Trotta, F. García-Carmona, J.M. López-Nicolás, Lifespan extension in caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int. J. Pharm. 589, 119862 (2020)

    Article  Google Scholar 

  12. C. Varan, A. Anceschi, S. Sevli, N. Bruni, L. Giraudo, E. Bilgiç, P. Korkusuz, A.B. İskit, F. Trotta, E. Bilensoy, Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 585, 119485 (2020)

    Article  Google Scholar 

  13. G. Hoti, S.L. Appleton, A.R. Pedrazzo, C. Cecone, A. Matencio, F. Trotta, F. Caldera, Strategies to develop cyclodextrin-based nanosponges for smart drug delivery (2021). https://doi.org/10.5772/intechopen.100182

  14. P. Mishra, B. Nayak, R.K. Dey, PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci. 11, 337–348 (2016)

    Article  Google Scholar 

  15. M. Cooley, A. Sarode, M. Hoore, D.A. Fedosov, S. Mitragotri, A.S. Gupta, Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10, 15350–15364 (2018)

    Article  Google Scholar 

  16. M. Argenziano, C. Lombardi, B. Ferrara et al., Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget 9, 35813–35829 (2018)

    Article  Google Scholar 

  17. K. Kettler, K. Veltman, D. van de Meent, A. van Wezel, A.J. Hendriks, Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 33, 481–492 (2014)

    Article  Google Scholar 

  18. P. Singh, X. Ren, T. Guo, L. Wu, S. Shakya, Y. He, C. Wang, A. Maharjan, V. Singh, J. Zhang, Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 190, 23–30 (2018)

    Article  Google Scholar 

  19. G. Hoti, F. Caldera, C. Cecone, A. Rubin Pedrazzo, A. Anceschi, S.L. Appleton, Y.K. Monfared, F. Trotta, Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges. Materials 14, 1–20 (2021)

    Article  Google Scholar 

  20. F. Trotta, R. Cavalli, W. Tumiatti, O. Zerbinati, C. Roggero, R. Vallero, Ultrasound synthesis of nanosponges.pdf. (2006)

    Google Scholar 

  21. F. Trotta, R. Cavalli, Characterization and applications of new hyper-cross-linked cyclodextrins. Compos. Interfaces 16, 39–48 (2009)

    Article  Google Scholar 

  22. C. Cecone, G. Hoti, I. Krabicova, S.L. Appleton, F. Caldera, P. Bracco, M. Zanetti, F. Trotta, Sustainable synthesis of cyclodextrin-based polymers exploiting natural deep eutectic solvents. Green Chem. 22, 5806–5814 (2020)

    Article  Google Scholar 

  23. A. Rubin Pedrazzo, A. Smarra, F. Caldera, G. Musso, N.K. Dhakar, C. Cecone, A. Hamedi, I. Corsi, F. Trotta, Eco-friendly β-cyclodextrin and linecaps polymers for the removal of heavy metals. Polymers 11, 1658 (2019)

    Article  Google Scholar 

  24. A.R. Pedrazzo, F. Caldera, M. Zanetti, S.L. Appleton, N.K. Dhakar, F. Trotta, Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein J. Org. Chem. 16, 1554–1563 (2020)

    Article  Google Scholar 

  25. A. Rubin Pedrazzo, F. Trotta, G. Hoti, F. Cesano, M. Zanetti, Sustainable mechanochemical synthesis of β-cyclodextrin polymers by twin screw extrusion. Environ Sci Pollut Res 29, 251–263 (2022)

    Article  Google Scholar 

  26. A. Matencio, N.K. Dhakar, F. Bessone, G. Musso, R. Cavalli, C. Dianzani, F. García-Carmona, J.M. López-Nicolás, F. Trotta, Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohyd. Polym. 231, 115763 (2020)

    Article  Google Scholar 

  27. A. Venkateshaiah, V.V.T. Padil, M. Nagalakshmaiah, S. Waclawek, M. Černík, R.S. Varma, Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 12, 1–33 (2020)

    Article  Google Scholar 

  28. E.A.M. Mendonça, M.C.B. Lira, M.M. Rabello, I.M.F. Cavalcanti, S.L. Galdino, I.R. Pitta, C.A. Do, M. Lima, M.G.R. Pitta, M.Z. Hernandes, N.S. Santos-Magalhães, Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech 13, 1355–1366 (2012)

    Article  Google Scholar 

  29. M.M. Yallapu, M. Jaggi, S.C. Chauhan, β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B 79, 113–125 (2010)

    Article  Google Scholar 

  30. G. Liu, Q. Jin, X. Liu, L. Lv, C. Chen, J. Li, Biocompatible vesicles based on PEO-b-PMPC/α-cyclodextrin inclusion complexes for drug delivery. Soft Matter 7, 662–669 (2011)

    Article  Google Scholar 

  31. C. Soica, C. Danciu, G. Savoiu-Balint et al., Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int. J. Mol. Sci. 15, 8235–8255 (2014)

    Article  Google Scholar 

  32. S. Kumar, T.F. Pooja, R. Rao, Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics 10, 1–18 (2018)

    Article  Google Scholar 

  33. L. Bokobza, Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers 10, 1–21 (2018)

    Google Scholar 

  34. V. Crupi, A. Fontana, M. Giarola, D. Majolino, G. Mariotto, A. Mele, L. Melone, C. Punta, B. Rossi, V. Venuti, Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers †. J. Raman Spectrosc. 44, 1457–1462 (2013)

    Article  Google Scholar 

  35. D. Zhang, J. Zhang, K. Jiang, K. Li, Y. Cong, S. Pu, Y. Jin, J. Lin, Preparation, characterisation and antitumour activity of β-, ϒ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochimica Acta Part A Mol. Biomol. Spectr. 152, 501–508 (2016)

    Article  Google Scholar 

  36. M. Ferro, F. Castiglione, C. Punta, L. Melone, W. Panzeri, B. Rossi, F. Trotta, A. Mele, Anomalous diffusion of ibuprofen in cyclodextrin nanosponge hydrogels: an HRMAS NMR study. Beilstein J. Org. Chem. 10, 2715–2723 (2014)

    Article  Google Scholar 

  37. R. Pushpalatha, S. Selvamuthukumar, D. Kilimozhi, Cross-linked, cyclodextrin-based nanosponges for curcumin delivery—physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Delivery Sci. Technol. 45, 45–53 (2018)

    Article  Google Scholar 

  38. B.A. Witika, M. Aucamp, L.L. Mweetwa, P.A. Makoni, Application of fundamental techniques for physicochemical characterizations to understand post-formulation performance of pharmaceutical nanocrystalline materials. Curr. Comput. Aided Drug Des. 11, 1–25 (2021)

    Google Scholar 

  39. R.L. Abarca, F.J. Rodríguez, A. Guarda, M.J. Galotto, J.E. Bruna, Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 196, 968–975 (2016)

    Article  Google Scholar 

  40. M. Rao, A. Bajaj, I. Khole, G. Munjapara, F. Trotta, In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77, 135–145 (2013)

    Article  Google Scholar 

  41. D. Massella, E. Celasco, F. Salaün, A. Ferri, A.A. Barresi, Overcoming the limits of flash nanoprecipitation: effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers (2018). https://doi.org/10.3390/polym10101092

    Article  Google Scholar 

  42. H. Cetin Babaoglu, A. Bayrak, N. Ozdemir, N. Ozgun, Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J. Food Process. Preserv. 1–8 (2017)

    Google Scholar 

  43. H. Yang, Z. Pan, W. Jin, L. Zhao, P. Xie, S. Chi, Z. Lei, H. Zhu, Y. Zhao, Preparation, characterization and cytotoxic evaluation of inclusion complexes between celastrol with polyamine-modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 95, 147–157 (2019)

    Article  Google Scholar 

  44. C. Cecone, G. Hoti, M. Zanetti, F. Trotta, P. Bracco, Sustainable production of curable maltodextrin- based electrospun microfibers. RSC Adv. 12, 762–771 (2022)

    Article  Google Scholar 

  45. H. Mashaqbeh, R. Obaidat, N. Al-Shar’I, Evaluation and characterization of curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers 13, 1–17 (2021)

    Google Scholar 

  46. M.R. Green, G.M. Manikhas, S. Orlov, B. Afanasyev, A.M. Makhson, P. Bhar, M.J. Hawkins, Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 17, 1263–1268 (2006)

    Article  Google Scholar 

  47. H. Hamada, K. Ishihara, N. Masuoka, K. Mikuni, N. Nakajima, Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins. J. Biosci. Bioeng. 102, 369–371 (2006)

    Article  Google Scholar 

  48. B. Mognetti, A. Barberis, S. Marino, G. Berta, S. De Francia, F. Trotta, R. Cavalli, In vitro enhancement of anticancer activity of paclitaxel by a cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem. 74, 201–210 (2012)

    Article  Google Scholar 

  49. N. Clemente, M. Argenziano, C.L. Gigliotti et al., Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models. Front. Pharmacol. 10, 776 (2019)

    Article  Google Scholar 

  50. S. Torne, S. Darandale, P. Vavia, F. Trotta, R. Cavalli, Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 18, 619–625 (2013)

    Article  Google Scholar 

  51. H. Sadaquat, M. Akhtar, Comparative effects of β-cyclodextrin, HP-β-cyclodextrin and SBE7-β-cyclodextrin on the solubility and dissolution of docetaxel via inclusion complexation. J. Incl. Phenom. Macrocycl. Chem. 96, 333–351 (2020)

    Article  Google Scholar 

  52. D. Zhang, J. Zhang, K. Jiang, K. Li, Y. Cong, S. Pu, Y. Jin, J. Lin, Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152, 501–508 (2016)

    Article  Google Scholar 

  53. A.C. Santos, D. Costa, L. Ferreira, C. Guerra, M. Pereira-Silva, I. Pereira, D. Peixoto, N.R. Ferreira, F. Veiga, Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv. Transl. Res. 11, 49–71 (2021)

    Article  Google Scholar 

  54. C.L. Gigliotti, B. Ferrara, S. Occhipinti et al., Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv 24, 670–680 (2017)

    Article  Google Scholar 

  55. G.J. Weiss, J. Chao, J.D. Neidhart et al., First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs 31, 986–1000 (2013)

    Article  Google Scholar 

  56. J. Chao, J. Lin, P. Frankel et al., Pilot trial of CRLX101 in patients with advanced, chemotherapy-refractory gastroesophageal cancer. J. Gastrointest. Oncol. 8, 962–969 (2017)

    Article  Google Scholar 

  57. K.T. Schmidt, F. Karzai, M. Bilusic, et al., A single-arm phase ii study combining NLG207, a nanoparticle camptothecin, with enzalutamide in advanced metastatic castration-resistant prostate cancer post-enzalutamide. Oncologist oyac100 (2022)

    Google Scholar 

  58. M. Argenziano, C.L. Gigliotti, N. Clemente et al., Improvement in the anti-tumor efficacy of doxorubicin nanosponges in in vitro and in mice bearing breast tumor models. Cancers (Basel) 12, E162 (2020)

    Article  Google Scholar 

  59. M. Pei, J.-Y. Pai, P. Du, P. Liu, Facile synthesis of fluorescent hyper-cross-linked β-cyclodextrin-carbon quantum dot hybrid nanosponges for tumor theranostic application with enhanced antitumor efficacy. Mol Pharmaceutics 15, 4084–4091 (2018)

    Article  Google Scholar 

  60. Y. Khazaei Monfared, M. Mahmoudian, C. Cecone, F. Caldera, P. Zakeri-Milani, A. Matencio, F. Trotta, Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers 14, 594 (2022)

    Article  Google Scholar 

  61. H. Bai, J. Wang, C.U. Phan, Q. Chen, X. Hu, G. Shao, J. Zhou, L. Lai, G. Tang, Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 12, 759 (2021)

    Article  Google Scholar 

  62. R. Cavalli, F. Trotta, W. Tumiatti, L. Serpe, G.P. Zara, 5-Fluorouracile loaded beta-ctclodextrin nanosponges: in vitro characterisation and cytotoxicity (2006)

    Google Scholar 

  63. X. Liang, D. Li, S. Leng, X. Zhu, RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother. 125, 109997 (2020)

    Article  Google Scholar 

  64. M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)

    Article  Google Scholar 

  65. J.E. Zuckerman, I. Gritli, A. Tolcher, J.D. Heidel, D. Lim, R. Morgan, B. Chmielowski, A. Ribas, M.E. Davis, Y. Yen, Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 111, 11449–11454 (2014)

    Article  Google Scholar 

  66. K. Chaturvedi, K. Ganguly, A. Kulkarni, V.H. Kulkarni, M. Nadagouda, W. Rudzinski, T. Aminabhavi, Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin. Drug Deliv. 8, 1455–1468 (2011)

    Article  Google Scholar 

  67. A. Matencio, S. Navarro-Orcajada, F. García-Carmona, J.M. López-Nicolás, Encapsulation of antimicrobial compounds, in Functionality of cyclodextrins in encapsulation for food applications. ed. by T.M. Ho, H. Yoshii, K. Terao, B.R. Bhandari (Springer International Publishing, Cham, 2021), pp.169–186

    Chapter  Google Scholar 

  68. M. Sundararajan, P.A. Thomas, K. Venkadeswaran, K. Jeganathan, P. Geraldine, Synthesis and characterization of chrysin-loaded β-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. J. Nanosci. Nanotechnol. 17, 8742–8751 (2017)

    Article  Google Scholar 

  69. S. Das, S. Mohanty, J. Maharana, S.R. Jena, J. Nayak, U. Subuddhi, Microwave-assisted β-cyclodextrin/chrysin inclusion complexation: an economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro. J. Mol. Liq. 310, 113257 (2020)

    Article  Google Scholar 

  70. A. Zafar, N.K. Alruwaili, S.S. Imam et al., Formulation of ternary genistein β-cyclodextrin inclusion complex: in vitro characterization and cytotoxicity assessment using breast cancer cell line. J. Drug Delivery Sci. Technol. 67, 102932 (2022)

    Article  Google Scholar 

  71. A. Kwiecień, J. Ruda-Kucerova, K. Kamiński, Z. Babinska, I. Popiołek, K. Szczubiałka, M. Nowakowska, M. Walczak, Improved pharmacokinetics and tissue uptake of complexed daidzein in rats. Pharmaceutics 12, 162 (2020)

    Article  Google Scholar 

  72. S. Peimanfard, A. Zarrabi, F. Trotta, A. Matencio, C. Cecone, F. Caldera, Developing novel hydroxypropyl-β-cyclodextrin-based nanosponges as carriers for anticancer hydrophobic agents: overcoming limitations of host-guest complexes in a comparative evaluation. Pharmaceutics 14, 1059 (2022)

    Article  Google Scholar 

  73. N. Sali, R. Csepregi, T. Kőszegi, S. Kunsági-Máté, L. Szente, M. Poór, Complex formation of flavonoids fisetin and geraldol with β-cyclodextrins. J. Lumin. 194, 82–90 (2018)

    Article  Google Scholar 

  74. R. Ghafelehbashi, M. Tavakkoli Yaraki, L. Heidarpoor Saremi, A. Lajevardi, M. Haratian, B. Astinchap, A.M. Rashidi, R. Moradian, A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: an experimental and DFT study. Mater. Sci. Eng., C 109, 110597 (2020)

    Article  Google Scholar 

  75. T.F. Kellici, M.V. Chatziathanasiadou, D. Diamantis, A.V. Chatzikonstantinou, I. Andreadelis, E. Christodoulou, G. Valsami, T. Mavromoustakos, A.G. Tzakos, Mapping the interactions and bioactivity of quercetin (2-hydroxypropyl)-β-cyclodextrin complex. Int. J. Pharm. 511, 303–311 (2016)

    Article  Google Scholar 

  76. M.A. Indap, S.C. Bhosle, P.T. Tayade, P.R. Vavia, Evaluation of toxicity and antitumour effects of a hydroxypropyl?-cyclodextrin inclusion complex of quercetin. Indian J. Pharm. Sci. 64, 349 (2002)

    Google Scholar 

  77. Q. Yao, M.-T. Lin, Q.-H. Lan, Z.-W. Huang, Y.-W. Zheng, X. Jiang, Y.-D. Zhu, L. Kou, H.-L. Xu, Y.-Z. Zhao, In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity. Drug Delivery 27, 54–65 (2020)

    Article  Google Scholar 

  78. S. Navarro-Orcajada, I. Conesa, F.J. Vidal-Sánchez, A. Matencio, L. Albaladejo-Maricó, F. García-Carmona, J.M. López-Nicolás, Stilbenes: characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Critical Rev. Food Sci. Nutrition 1–19 (2022)

    Google Scholar 

  79. J.M. López-Nicolás, F. García-Carmona, Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC. Food Chem. 109, 868–875 (2008)

    Article  Google Scholar 

  80. A. Matencio, S. Navarro-Orcajada, I. Conesa, I. Muñoz-Sánchez, L. Laveda-Cano, D. Cano-Yelo, F. García-Carmona, J.M. López-Nicolás, Evaluation of juice and milk “food models” fortified with oxyresveratrol and β-Cyclodextrin. Food Hydrocolloids 98, 105250 (2020)

    Article  Google Scholar 

  81. A. Matencio, F. García-Carmona, J.M. López-Nicolás, The inclusion complex of oxyresveratrol in modified cyclodextrins: a thermodynamic, structural, physicochemical, fluorescent and computational study. Food Chem. 232, 177–184 (2017)

    Article  Google Scholar 

  82. A. Matencio, F. García-Carmona, J.M. López-Nicolás, Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct 7, 2367–2373 (2016)

    Article  Google Scholar 

  83. S. Navarro-Orcajada, I. Conesa, A. Matencio, F. García-Carmona, J.M. López-Nicolás, Molecular encapsulation and bioactivity of gnetol, a resveratrol analogue, for use in foods. J. Sci. Food Agric. (2022). https://doi.org/10.1002/jsfa.11781

    Article  Google Scholar 

  84. J.M. López-Nicolás, P. Rodríguez-Bonilla, L. Méndez-Cazorla, F. García-Carmona, Physicochemical study of the complexation of pterostilbene by natural and modified cyclodextrins. J. Agric. Food Chem. 57, 5294–5300 (2009)

    Article  Google Scholar 

  85. J.M. López-Nicolás, P. Rodríguez-Bonilla, F. García-Carmona, Complexation of pinosylvin, an analogue of resveratrol with high antifungal and antimicrobial activity, by different types of cyclodextrins. J. Agric. Food Chem. 57, 10175–10180 (2009)

    Article  Google Scholar 

  86. S. Navarro-Orcajada, I. Conesa, A. Matencio, P. Rodríguez-Bonilla, F. García-Carmona, J.M. López-Nicolás, The use of cyclodextrins as solubility enhancers in the ORAC method may cause interference in the measurement of antioxidant activity. Talanta 123336 (2022)

    Google Scholar 

  87. N.K. Dhakar, A. Matencio, F. Caldera, M. Argenziano, R. Cavalli, C. Dianzani, M. Zanetti, J.M. López-Nicolás, F. Trotta, Comparative evaluation of solubility, cytotoxicity and photostability studies of resveratrol and oxyresveratrol loaded nanosponges. Pharmaceutics 11, 545 (2019)

    Article  Google Scholar 

  88. M. Palminteri, N.K. Dhakar, A. Ferraresi, F. Caldera, C. Vidoni, F. Trotta, C. Isidoro, Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics 5, 197–212 (2021)

    Article  Google Scholar 

  89. K. Banik, A.M. Ranaware, C. Harsha, T. Nitesh, S. Girisa, V. Deshpande, L. Fan, S.P. Nalawade, G. Sethi, A.B. Kunnumakkara, Piceatannol: a natural stilbene for the prevention and treatment of cancer. Pharmacol. Res. 153, 104635 (2020)

    Article  Google Scholar 

  90. H. Inagaki, R. Ito, Y. Setoguchi, Y. Oritani, T. Ito, Administration of piceatannol complexed with α-cyclodextrin improves its absorption in rats. J. Agric. Food Chem. 64, 3557–3563 (2016)

    Article  Google Scholar 

  91. S. Lucia Appleton, S. Navarro-Orcajada, F.J. Martínez-Navarro, F. Caldera, J.M. López-Nicolás, F. Trotta, A. Matencio, Cyclodextrins as anti-inflammatory agents: basis, drugs and perspectives. Biomolecules 11, 1384 (2021)

    Google Scholar 

  92. M.K. Shanmugam, G. Rane, M.M. Kanchi, F. Arfuso, A. Chinnathambi, M.E. Zayed, S.A. Alharbi, B.K.H. Tan, A.P. Kumar, G. Sethi, The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20, 2728–2769 (2015)

    Article  Google Scholar 

  93. L. Zhang, S. Man, H. Qiu, Z. Liu, M. Zhang, L. Ma, W. Gao, Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol. 48, 31–38 (2016)

    Article  Google Scholar 

  94. A. Rezaei, J. Varshosaz, M. Fesharaki, A. Farhang, S.M. Jafari, Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomed. 14, 4589–4599 (2019)

    Article  Google Scholar 

  95. S. Navarro-Orcajada, A. Matencio, C. Vicente-Herrero, F. García-Carmona, J.M. López-Nicolás, Study of the fluorescence and interaction between cyclodextrins and neochlorogenic acid, in comparison with chlorogenic acid. Sci. Rep. 11, 3275 (2021)

    Article  Google Scholar 

  96. Y. Ishida, R. Gao, N. Shah, P. Bhargava, T. Furune, S.C. Kaul, K. Terao, R. Wadhwa, Anticancer activity in honeybee propolis: functional insights to the role of caffeic acid phenethyl ester and its complex with γ-cyclodextrin. Integr. Cancer Ther. 17, 867–873 (2018)

    Article  Google Scholar 

  97. A.S. Al-Abboodi, W.M. Al-Sheikh, E.E.M. Eid, F. Azam, M.S. Al-Qubaisi, Inclusion complex of clausenidin with hydroxypropyl-β-cyclodextrin: improved physicochemical properties and anti-colon cancer activity. Saudi Pharmaceutical J. 29, 223–235 (2021)

    Article  Google Scholar 

  98. G.G.G. Trindade, G. Thrivikraman, P.P. Menezes et al., Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem. Toxicol. 125, 198–209 (2019)

    Article  Google Scholar 

  99. A.G. Guimarães, M.A. Oliveira, S. Alves R. dos, P. Menezes P. dos, M.R. Serafini, A.A. de Souza Araújo, D.P. Bezerra, L.J. Quintans Júnior, Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biol. Interact. 227, 69–76 (2015)

    Google Scholar 

  100. I. Sas, Thymus vulgaris extract formulated as cyclodextrin complexes: synthesis, characterization, antioxidant activity and in vitro cytotoxicity assessment. FARMACIA 67, 442–451 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Science and Innovation, project PID2021-122896NB-I00 (MCIN/AEI/10.13039/501100011033/FEDER, UE). This work is the partial result of a predoctoral contract for the training of research staff (for S.N.O, number 21269/FPI/19) financed by the Fundación Séneca (Región de Murcia, Spain), a predoctoral contract (for I.C.) financed by the University of Murcia (Región de Murcia, Spain), and a RTDA contract (for A.M) from the D.M 1062/2021 (Ministero dell’Università e della Ricerca) for the University of Turin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gjylije Hoti or Adrián Matencio .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molinar, C. et al. (2023). Cyclodextrins and Cyclodextrin-Based Nanosponges for Anti-Cancer Drug and Nutraceutical Delivery. In: Malviya, R., Sundram, S. (eds) Targeted Cancer Therapy in Biomedical Engineering. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9786-0_17

Download citation

Publish with us

Policies and ethics