Skip to main content

Sensitivity Characteristics of the Ultradeep Carbonate Gas Reservoir

  • Chapter
  • First Online:
Ultradeep Carbonate Gas Reservoirs
  • 159 Accesses

Abstract

Reservoir sensitivity is a key factor that cannot be ignored in the development of oil and gas reservoirs, because it is directly related to formation damage and affects oil and gas production and recovery factor. Precipitation, swelling, or migration of clay particles occurs in the pore throats when the external fluid is incompatible with the reservoir minerals, thereby blocking pore throat channels and causing formation damage. Therefore, reservoir sensitivity is defined as the sensitivity degree of oil and gas reservoirs to various types of formation damage, including velocity sensitivity, water sensitivity, salinity sensitivity, alkali sensitivity and acid sensitivity. These five conventional sensitivities and stress sensitivity are the main factors causing formation damage during the exploration and exploitation. Formation damage will inevitably lead to changes in reservoir pore structure and fluid percolation characteristics, thereby indirectly affecting the production capacity and recovery factor of oil and gas reservoirs. Systematic evaluation and analysis of reservoir sensitivity characteristics are the basis for revealing reservoir damage mechanism and influencing factors. Developing appropriate reservoir protection and damage prevention measures is the key to maintaining efficient development of oil and gas reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, A. K. M. B., Niioka, M., Fujii, Y., Fukuda, D., & Kodama, J. I. (2014). Effects of confining pressure on the permeability of three rock types under compression. International Journal of Rock Mechanics and Mining Sciences, 65(1), 49–61.

    Article  Google Scholar 

  • Amorim, C. L. G., Lopes, R. T., Barroso, R. C., Queiroz, J. C., Alves, D. B., et al. (2007). Effect of clay–water interactions on clay swelling by X-ray diffraction. Nuclear Instruments and Methods in Physics Research A, 580(1), 768–770.

    Article  Google Scholar 

  • Bazin, B., Bekri, S., Vizika, O., Herzhaft, B., & Aubry, E. (2010). Fracturing in tight gas reservoirs: Application of special-core-analysis methods to investigate formation-damage mechanisms. SPE Journal, 15(4), 969–976.

    Article  Google Scholar 

  • Bedrikovetsky, P., Siqueira, F. D., Furtado, C. A., & Souza, A. L. S. (2011). Modified particle detachment model for colloidal transport in porous media. Transport in Porous Media, 86(2), 353–383.

    Article  Google Scholar 

  • Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F. D., Furtado, C. A., & de Souza, A. L. S. (2012). Particle detachment under velocity alternation during suspension transport in porous media. Transport in Porous Media, 91(1), 173–197.

    Article  Google Scholar 

  • Bennion, D. B. (2002). An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations. Journal of Canadian Petroleum Technology, 41(11), 29–36.

    Article  Google Scholar 

  • Cao, N., & Lei, G. (2019). Stress sensitivity of tight reservoirs during pressure loading and unloading process. Petroleum Exploration and Development, 46(1), 138–144.

    Article  Google Scholar 

  • Dou, H. E., Zhang, H. J., Yao, S. L., Zhu, D., Sun, T., et al. (2016). Measurement and evaluation of the stress sensitivity in tight reservoirs. Petroleum Exploration and Development, 43(6), 1116–1123.

    Article  Google Scholar 

  • Eleri, O. O., & Ursin, J. R. (1992). Physical aspects of formation damage in linear flooding experiments. SPE-23784-MS

    Google Scholar 

  • Elraies, K. A., & Basbar, A. E. (2015). The effect of water salinity on silica dissolution rate and subsequent formation damage during chemical EOR process. Journal of Petroleum & Environmental Biotechnology, 2015, 6(2), 1000209.

    Google Scholar 

  • Fatt, I., & Davis, D. (1952). Reduction in permeability with overburden pressure. Journal of Petroleum Technology., 4(12), 16.

    Article  Google Scholar 

  • Gao, S. S., Liu, H. X., Ren, D., Hu, Z. M., & Ye, L. Y. (2015). Deliverability equation of fracture-cave carbonate reservoirs and its influential factors. Natural Gas Industry, 35(9), 48–54.

    Google Scholar 

  • Gardner, K. H., & Arias, M. S. (2000). Clay swelling and formation permeability reductions induced by a nonionic surfactant. Environmental Science & Technology, 34(1), 160–166.

    Article  Google Scholar 

  • Ge, Z. X., Liu, W. D., & Huang, Y. Z. (2006). A study on formation damage caused by alkali in ASP flooding system. Oilfield Chemistry, 23, 362–364.

    Google Scholar 

  • Guo, T. K., Gong, F. C., Lin, X., Lin, Q., & Wang, X. Z. (2018). Experimental investigation on damage mechanism of guar gum fracturing fluid to low-permeability reservoir based on nuclear magnetic resonance. Journal of Energy Resources Technology, 140(7), 072906.

    Article  Google Scholar 

  • Gupta, V., Hampton, M. A., Stokes, J. R., Nguyen, A. V., & Miller, J. D. (2011). Particle interactions in kaolinite suspensions and corresponding aggregate structures. Journal of Colloid and Interface Science, 359(1), 95–103.

    Article  Google Scholar 

  • Jia, C. J., Xu, W. Y., Wang, H. L., Wang, R. B., Jun, Y., et al. (2017). Stress dependent permeability and porosity of low-permeability rock. Journal of Central South University, 24(10), 2396–2405.

    Article  Google Scholar 

  • Johnston, N., & Beeson, C. M. (1945). Water permeability of reservoir sands. Transactions of the AIME, 160(1), 43–55.

    Article  Google Scholar 

  • Jones, F. O. (1975). A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(4). 55–0148906275900273. https://doi.org/10.1016/0148-9062(75)90027-3

  • Kang, Y. L., Xu, C. Y., You, L. J., Yu, H. F., & Zhang, B. J. (2014). Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir. Journal of Natural Gas Science and Engineering, 18, 353–359.

    Article  Google Scholar 

  • Kang, Y. L., Xu, C. L., You, L. J., Tang, L., & Lian, Z. (2015). Comprehensive prediction of dynamic fracture width for formation damage control in fractured tight gas reservoir. International Journal of Oil Gas and Coal Technology, 9(3), 296–310.

    Article  Google Scholar 

  • Kang, M. S., Watabe, Y., & Tsuchida, T. (2003). Effect of drying process on the evaluation of microstructure of clays using scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). ISOPE-I-03-138

    Google Scholar 

  • Khilar, K. C., & Fogler, H. S. (1984). The existence of a critical salt concentration for particle release. Journal of Colloid and Interface Science, 101(1), 214–224.

    Article  Google Scholar 

  • Liao, J., Tang, H., Zhu, X., Ren, M., Zhen, S., et al. (2012). Water sensitivity experiment and damage mechanism of sandstone reservoirs with ultra-low permeability: A case study of the eighth oil layer in the Yanchang Formation of Xifeng oilfield, Ordos Basin. Oil & Gas Geology, 33(2), 321–328.

    Google Scholar 

  • Liu, H. X., Ren, D., Hu, Z. M., & An, W. G. (2014). Establishment and application of seepage mathematical model of Longwangmiao Fm gas reservoirs in the Sichuan Basin. Natural Gas Industry, 34(3), 110–114.

    Google Scholar 

  • Liu, Z. S., Liu, D. M., Cai, Y. D., & Qiu, Y. K. (2020). Permeability, mineral and pore characteristics of coals response to acid treatment by NMR and QEMSCAN: Insights into acid sensitivity mechanism. Journal of Petroleum Science and Engineering, 198, 108205.

    Article  Google Scholar 

  • Liu, Z. Q., Shi, B. B., Ge, T. C., Sui, F. G., Wang, Y., et al. (2021). Tight sandstone reservoir sensitivity and damage mechanism analysis: a case study from Ordos Basin, China and implications for reservoir damage prevention. Energy Geoscience, B4.

    Google Scholar 

  • Ma, K., Jiang, H. Q., Li, J. J., & Zhao, L. (2016). Experimental study on the micro alkali sensitivity damage mechanism in low-permeability reservoirs using QEMSCAN. Journal of Natural Gas Science and Engineering, 36, 1004–1017.

    Article  Google Scholar 

  • Mcglade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas—a review of regional and global resource estimate. Energy, 55, 571–584.

    Article  Google Scholar 

  • Mohnot, S. M., Bae, J. H., & Foley, W. L. (1987). A study of mineral/alkali reactions. SPE Reservoir Engineering, 2(4), 653–663.

    Article  Google Scholar 

  • Rahimi, S., & Hosseini, M. (2015). Laboratory studies of creep behavior on thick-walled hollow cylindrical salt rock specimens. Arabian Journal of Geosciences, 8(8), 5949–5957.

    Article  Google Scholar 

  • Rahman, S. S., Rahman, M. M., & Khan, F. A. (1995). Response of low-permeability, illitic sandstone to drilling and completion fluids. Journal of Petroleum Science and Engineering, 12, 309–322.

    Article  Google Scholar 

  • Rashid, F., Glover, P. W. J., Lorinczi, P., Hussein, D., & Lawrence, J. A. (2017). Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. Journal of Petroleum Science and Engineering, 156, 814–826.

    Article  Google Scholar 

  • Ru, Z., An, K., & Hu, J. (2019). The impact of sulfur precipitation in developing a sour gas reservoir with pressure-sensitive effects. Advances in Geo-Energy Research, 3(3), 268–276.

    Article  Google Scholar 

  • Tan, Q. G., Kang, Y. L., You, L. J., Xu, C. Y., Zhang, X. W., et al. (2021a). Stress-sensitivity mechanisms and its controlling factors of saline-lacustrine fractured tight carbonate reservoir. Journal of Natural Gas Science and Engineering, 88, 103864.

    Article  Google Scholar 

  • Tan, Q. G., You, L. J., Kang, Y. L., & Xu, C. Y. (2021b). Formation damage mechanisms in tight carbonate reservoirs: The typical illustrations in Qaidam Basin and Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 95, 104193.

    Article  Google Scholar 

  • Tang, Y., Yang, R., Du, Z., & Zeng, F. (2015). Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs. Transport in Porous Media, 107(1), 205–218.

    Article  Google Scholar 

  • Tao, S., Tang, D. Z., Xu, H., Li, S., Geng, Y. G., et al. (2017). Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity: A case of Baode Block, northeastern Ordos Basin, China. Journal of Petroleum Science and Engineering, 152, 229–237.

    Article  Google Scholar 

  • Wang, B. Y., Qin, Y., Shen, J., Wang, G., & Zhang, Q. S. (2018a). Influence of stress and formation water properties on velocity sensitivity of lignite reservoir using simulation experiment. Fuel, 224, 579–590.

    Article  Google Scholar 

  • Wang, L., Yang, S. L., Meng, Z., Chen, Y. Z., Qian, K., et al. (2018b). Time-dependent shape factors for fractured reservoir simulation: Effect of stress sensitivity in matrix system. Journal of Petroleum Science and Engineering, 163, 556–569.

    Article  Google Scholar 

  • Wang, B. Y., Qin, Y., Shen, J., Wang, G., Zhang, Q. S., et al. (2019). Experimental study on water sensitivity and salt sensitivity of lignite reservoir under different pH. Journal of Petroleum Science and Engineering, 172, 1202–1214.

    Article  Google Scholar 

  • Wang, L., He, Y. M., Peng, X., Deng, H., Liu, Y. C., et al. (2020). Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Marine and Petroleum Geology, 111, 44–65.

    Article  Google Scholar 

  • Wang, Z. Y., Li, H. X., Lan, X. M., Wang, K., Yang, Y. F., et al. (2021). Formation damage mechanism of a sandstone reservoir based on micro-computed tomography. Advances in Geo-Energy Research, 5(1), 25–38.

    Article  Google Scholar 

  • Wilson, M. J., Wilson, L., & Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: A critical review with some new insights. Clay Minerals, 49(2), 147–164.

    Article  Google Scholar 

  • Wu, X. H., Pu, H., Zhu, K. L., & Lu, S. Q. (2017). Formation damage mechanisms and protection technology for Nanpu nearshore tight gas reservoir. Journal of Petroleum Science and Engineering, 158, 509–515.

    Article  Google Scholar 

  • Xiao, W. L., Li, T., Li, M., Zhao, J. Z., Zheng, L. L., et al. (2016). Evaluation of the stress sensitivity in tight reservoirs. Petroleum Exploration and Development, 43(1), 115–123.

    Article  Google Scholar 

  • Xu, C. Y., Kang, Y. L., You, Z. J., Chen, M. J., et al. (2016). Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. Journal of Natural Gas Science and Engineering, 36, 1208–1219.

    Article  Google Scholar 

  • Xu, C., Lin, C., Kang, Y., & You, L. (2018a). An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: Characteristics, mechanisms and controlling factors. Rock Mechanics and Rock Engineering, 51(8), 2321–2338.

    Article  Google Scholar 

  • Xu, C., You, Z., Kang, Y., & You, L. (2018b). Stochastic modelling of particulate suspension transport for formation damage prediction in fractured tight reservoir. Fuel, 221, 476–490.

    Article  Google Scholar 

  • Yang, S., Sheng, Z., Liu, Z., Song, Z., Wu, M., et al. (2008). Evaluation and prevention of formation damage in offshore sandstone reservoirs in China. Petroleum Science, 5(4), 340–347.

    Article  Google Scholar 

  • Yuan, B., & Wood, D. A. (2018). A comprehensive review of formation damage during enhanced oil recovery. Journal of Petroleum Science and Engineering, 167, 287–299.

    Article  Google Scholar 

  • Yuan, B., Moghanloo, R. G., & Zheng, D. (2016). Analytical solution of nanoparticles utilization to reduce fines migration in porous medium. SPE Journal, 21(6), 2317–2332.

    Article  Google Scholar 

  • Zhang, S. H. (1993). Reservoir protection technology. Petroleum Industry Press.

    Google Scholar 

  • Zhang, W. T., Wang, Q., Ning, Z. F., Zhang, R., Huang, L., et al. (2018). Relationship between the stress sensitivity and pore structure of shale. Journal of Natural Gas Science and Engineering, 59, 440–451.

    Article  Google Scholar 

  • Zhang, L. F., Zhou, F. J., Zhang, S. C., Li, Z., Wang, J., et al. (2019). Evaluation of permeability damage caused by drilling and fracturing fluids in tight low permeability sandstone reservoirs. Journal of Petroleum Science and Engineering, 175, 1122–1135.

    Article  Google Scholar 

  • Zhang, L. F., Zhou, F. J., Pournik, M., Liang, T. B., Wang, J., et al. (2020). An integrated method to evaluate formation damage resulting from water and alkali sensitivity in dongping bedrock reservoir. SPE Reservoir Evaluation & Engineering, 23(1), 187–199.

    Article  Google Scholar 

  • Zhao, X., Qiu, Z. S., Sun, B. J., Liu, S. J., Xing, X. J., et al. (2019). Formation damage mechanisms associated with drilling and completion fluids for deep-water reservoirs. Journal of Petroleum Science and Engineering, 173, 112–121.

    Article  Google Scholar 

  • Zheng, J., Zheng, L., Liu, H., & Ju, Y. (2015). Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. International Journal of Rock Mechanics and Mining Sciences, 78, 304–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L. (2023). Sensitivity Characteristics of the Ultradeep Carbonate Gas Reservoir. In: Ultradeep Carbonate Gas Reservoirs. Springer, Singapore. https://doi.org/10.1007/978-981-19-9708-2_4

Download citation

Publish with us

Policies and ethics