Skip to main content

Biological and Chemical Aspects of Chitosan

  • Chapter
  • First Online:
Chitosan Nanocomposites

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Chitosan is a polysaccharide that is made from chitin—a matter forming from the operation of treating shrimp shells, as well as other crustaceans, with NaOH (sodium hydroxide). Chitosan has profited from a substantial number of trading and equally biomedical uses. It can be used in agriculture, for seed treatment, and as a biopesticide, helping plants fight fungal infections. In winemaking, it is used to prevent the wine from spoiling. On an industrial scale, it is also used in water filtration processes. Being considered a good haemostatic, chitosan is useful in medicine for the creation of bandages designed to reduce bleeding as well as an antibacterial agent, being used especially in the treatment of gum disease or bleeding. It is also anti-carcinogenic. Somewhat controversially, chitosan has been claimed for its role in limiting fat absorption, which makes it useful for dieting, with no evidence yet to contradict this special property of chitosan. Thus, chitosan has been increasingly used to support weight loss efforts due to its valuables that reduce fat absorption in the intestines. Chitin and chitosan (chitinous substances) are found in abundance in nature and are renewable sources, which have attracted interest in developing new applications based on these simple substances. Moreover, chitinous biopolymers are biocompatible, biodegradable, non-toxic, valuables that have allowed the use of their derivatives in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Bell, J.C. Hubbard, L. Liu, R.M. Davis, K.V. Subbarao, Effects of Chitin and Chitosan on the incidence and severity of fusarium yellows of celery. Plant Dis. 82(3), 322–328 (1998). https://doi.org/10.1094/PDIS.1998.82.3.322

    Article  CAS  PubMed  Google Scholar 

  2. M. Habibizadeh, S. Nadri, A. Fattahi, K. Rostamizadeh, P. Mohammadi, S. Andalib, M. Hamidi, N. Forouzideh, Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J. Biomed. Mater. Res. A 109(11), 2237–2254 (2021). https://doi.org/10.1002/jbm.a.37208

    Article  CAS  PubMed  Google Scholar 

  3. T. Nagata, S. Shinya, T. Ohnuma, T. Fukamizo, Multi-functionality of a tryptophan residue conserved in substrate-binding groove of GH19 Chitinases. Sci. Rep. 11(1), 2494 (2021). https://doi.org/10.1038/s41598-021-81903-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Zhang, J. He, S. Xiong, Q. Xiao, Y. Xiao, F. Ding, H. Ji, Z. Yang, Z. Li, Construction and nanostructure of chitosan/nanocellulose hybrid aerogels. Biomacromol 22(8), 3216–3222 (2021). https://doi.org/10.1021/acs.biomac.1c00266

    Article  CAS  Google Scholar 

  5. H. Jayasantha Kumari, P. Krishnamoorthy, T.K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 96, 324–333 (2017). https://doi.org/10.1016/j.ijbiomac.2016.11.077

    Article  CAS  PubMed  Google Scholar 

  6. M. Zhang, F. Zhang, C. Li, H. An, T. Wan, P. Zhang, Application of Chitosan and its derivative polymers in clinical medicine and agriculture. Polymers (Basel) 14(5), 958 (2022). https://doi.org/10.3390/polym14050958

    Article  CAS  PubMed  Google Scholar 

  7. M. Rajabi, J. Cabral, S. Saunderson, M.A. Ali, Green synthesis of chitooligosaccharide-PEGDA derivatives through aza-Michael reaction for biomedical applications. Carbohydr Polym. 295, 119884 (2022). https://doi.org/10.1016/j.carbpol.2022.119884

    Article  CAS  PubMed  Google Scholar 

  8. E.P. Milan, V.C.A. Martins, M.M. Horn, A.M.G. Plepis, Influence of blend ratio and mangosteen extract in chitosan/collagen gels and scaffolds: Rheological and release studies. Carbohydr Polym. 292, 119647 (2022). https://doi.org/10.1016/j.carbpol.2022.119647

    Article  CAS  PubMed  Google Scholar 

  9. Ö. Varol Avcılar, E.E. Onbaşılar, A. Kocakaya, Effects of coated hatching eggs obtained from old broiler breeders with chitosan on embryonic growth, hatching results and chick quality. J. Anim. Physiol. Anim. Nutr. (Berl). 105(5), 946–951 (2021). https://doi.org/10.1111/jpn.13506

    Article  CAS  PubMed  Google Scholar 

  10. F. Khan, D. Oh, P. Chandika, D.M. Jo, N.I. Bamunarachchi, W.K. Jung, Y.M. Kim, Inhibitory activities of phloroglucinol-chitosan nanoparticles on mono- and dual-species biofilms of Candida albicans and bacteria. Colloids Surf. B Biointerfaces. 211, 112307 (2022). https://doi.org/10.1016/j.colsurfb.2021.112307

    Article  CAS  PubMed  Google Scholar 

  11. J. Wu, L. Zhang, Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int. J. Biol. Macromol. 121, 1101–1108 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.128

    Article  CAS  PubMed  Google Scholar 

  12. D. Hao, Y. Liang, Adsorption of Cu2+, Cd2+ and Pb2+ in wastewater by modified chitosan hydrogel. Environ. Technol. 43(6), 876–884 (2022). https://doi.org/10.1080/09593330.2020.1807612

    Article  CAS  PubMed  Google Scholar 

  13. P. Phuong, N.C. Minh, H.N. Cuong, N. Van Minh, N.T. Han, N. Van Hoa, H. Yen, T.S. Trung, Recovery of protein hydrolysate and chitosan from black tiger shrimp (Penaeus monodon) heads: approaching a zero waste process. J. Food Sci. Technol. 54(7), 1850–1856 (2017). https://doi.org/10.1007/s13197-017-2616-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Stasińska-Jakubas, B. Hawrylak-Nowak, Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules 27(9), 2801 (2022). https://doi.org/10.3390/molecules27092801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Li, H. Liu, J. Liu, Y. Pei, X. Zheng, K. Tang, F. Wang, Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly(vinyl alcohol) sponge for selective and versatile oil/water separation. Int. J. Biol. Macromol. 192, 169–179 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.189

    Article  CAS  PubMed  Google Scholar 

  16. A.J. Worthen, K.S. Irving, Y. Lapitsky, Supramolecular strategy effects on chitosan bead stability in acidic media: A comparative study. Gels 5(1), 11 (2019). https://doi.org/10.3390/gels5010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.S. Kritchenkov, A.V. Kletskov, A.R. Egorov, A.G. Tskhovrebov, A.V. Kurliuk, N.V. Zhaliazniak, T.V. Shakola, V.N. Khrustalev, New water-soluble chitin derivative with high antibacterial properties for potential application in active food coatings. Food Chem. 343, 128696 (2021). https://doi.org/10.1016/j.foodchem.2020.128696

    Article  CAS  PubMed  Google Scholar 

  18. O. Owoseni, Y. Su, S. Raghavan, A. Bose, V.T. John, Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. J. Colloid Interface Sci. 620, 135–143 (2022). https://doi.org/10.1016/j.jcis.2022.03.142

    Article  CAS  PubMed  Google Scholar 

  19. I. Benucci, C. Lombardelli, I. Cacciotti, M. Esti, Papain covalently immobilized on chitosan-clay nanocomposite films: Application in synthetic and real white wine. Nanomaterials (Basel) 10(9), 1622 (2020). https://doi.org/10.3390/nano10091622

    Article  CAS  PubMed  Google Scholar 

  20. N. Bian, X. Yang, X. Zhang, F. Zhang, Q. Hou, J. Pei, A complex of oxidised chitosan and silver ions grafted to cotton fibres with bacteriostatic properties. Carbohydr Polym. 262, 117714 (2021). https://doi.org/10.1016/j.carbpol.2021.117714

    Article  CAS  PubMed  Google Scholar 

  21. D. Sikorski, K. Gzyra-Jagieła, Z. Draczyński, The kinetics of chitosan degradation in organic acid solutions. Mar. Drugs. 19(5), 236 (2021). https://doi.org/10.3390/md19050236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Wang, J. Ma, T. Qiu, M. Tang, X. Zhang, W. Dong, In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N, O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur J Pharm Sci. 163, 105864 (2021). https://doi.org/10.1016/j.ejps.2021.105864

    Article  CAS  PubMed  Google Scholar 

  23. E. Zhang, R. Xing, S. Liu, K. Li, Y. Qin, H. Yu, P. Li, Comparison in docetaxel-loaded nanoparticles based on three different carboxymethyl chitosans. Int. J. Biol. Macromol. 101, 1012–1018 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.195

    Article  CAS  PubMed  Google Scholar 

  24. W. Wang, Q. Meng, Q. Li, J. Liu, M. Zhou, Z. Jin, K. Zhao, Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 21(2), 487 (2020). https://doi.org/10.3390/ijms21020487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. I. Badreddine, C. Lafitte, L. Heux, N. Skandalis, Z. Spanou, Y. Martinez, M.T. Esquerré-Tugayé, V. Bulone, B. Dumas, A. Bottin, Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryot Cell 7(11), 1980–1993 (2008). https://doi.org/10.1128/EC.00091-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.M. Afroz, M.N.H. Kashem, K.M.P.S. Piash, N. Islam, Saccharomyces cerevisiae as an untapped source of fungal chitosan for antimicrobial action. Appl. Biochem. Biotechnol. 193(11), 3765–3786 (2021). https://doi.org/10.1007/s12010-021-03639-0

    Article  CAS  PubMed  Google Scholar 

  27. S. Rathinam, S. Ólafsdóttir, S. Jónsdóttir, M.A.Hjálmarsdóttir, M. Másson, Selective synthesis of N,N,N-trimethylated chitosan derivatives at different degree of substitution and investigation of structure-activity relationship for activity against P. aeruginosa and MRSA. Int. J. Biol. Macromol. 160, 548–557 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.109

  28. N. Yan, X.F. Wan, X.S. Chai, Simultaneous determination of the degree of deacetylation and substitution on carboxymethyl chitosan by headspace gas chromatography. J. Agric. Food Chem. 67(31), 8700–8705 (2019). https://doi.org/10.1021/acs.jafc.9b02974

    Article  CAS  PubMed  Google Scholar 

  29. S. Nishida, M. Shibano, H. Kamitakahara, T. Takano, Basic study for acyl chitosan isothiocyanates synthesis by model experiments using glucosamine derivatives. Int. J. Biol. Macromol. 132, 17–23 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.114

    Article  CAS  PubMed  Google Scholar 

  30. S. Kumari, S.H. Kumar Annamareddy, S. Abanti, R.P. Kumar, Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 104(Pt B), 1697–1705 (2017). https://doi.org/10.1016/j.ijbiomac.2017.04.119

    Article  CAS  PubMed  Google Scholar 

  31. M. Psarianos, S. Ojha, R. Schneider, O.K. Schlüter, Chitin isolation and chitosan production from house crickets (Acheta domesticus) by environmentally friendly methods. Molecules 27(15), 5005 (2022). https://doi.org/10.3390/molecules27155005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. Nwe, T. Furuike, H. Tamura, Isolation and characterization of chitin and chitosan from marine origin. Adv. Food Nutr. Res. 72, 1–15 (2014). https://doi.org/10.1016/B978-0-12-800269-8.00001-4

    Article  CAS  PubMed  Google Scholar 

  33. H.A. Said Al Hoqani, N. Al-Shaqsi, M.A.Hossain, M.A. Al Sibani, Isolation and optimization of the method for industrial production of chitin and chitosan from Omani shrimp shell. Carbohydr. Res. 492, 108001 (2020). https://doi.org/10.1016/j.carres.2020.108001

  34. R.M. Abdel-Rahman, R. Hrdina, A.M. Abdel-Mohsen, M.M. Fouda, A.Y. Soliman, F.K. Mohamed, K. Mohsin, T.D. Pinto, Chitin and chitosan from Brazilian Atlantic coast: Isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107–120 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  35. T.S. Trung, L.H. Tram, N. Van Tan, N. Van Hoa, N.C. Minh, P.T. Loc, W.F. Stevens, Improved method for production of chitin and chitosan from shrimp shells. Carbohydr. Res. 489, 107913 (2020). https://doi.org/10.1016/j.carres.2020.107913

    Article  CAS  PubMed  Google Scholar 

  36. J. Synowiecki, N.A. Al-Khateeb, Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43(2), 145–171 (2003). https://doi.org/10.1080/10408690390826473

    Article  CAS  PubMed  Google Scholar 

  37. H. Zhang, S. Yun, L. Song, Y. Zhang, Y. Zhao, The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int. J. Biol. Macromol. 96, 334–339 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  38. F. Samadi, Z. Es’haghi, Determination of phthalate esters in cosmetics and baby care products by a biosorbent based on lawsone capped chitosan and followed by liquid chromatography. J. Chromatogr. Sci. 60(3), 287–297 (2022). https://doi.org/10.1093/chromsci/bmab062

    Article  CAS  PubMed  Google Scholar 

  39. J. Brokešová, M. Slámová, P. Zámostný, M. Kuentz, J. Koktan, L. Krejčík, B. Vraníková, P. Svačinová, Z. Šklubalová, Mechanistic study of dissolution enhancement by interactive mixtures of chitosan with meloxicam as model. Eur. J. Pharm. Sci. 169, 106087 (2022). https://doi.org/10.1016/j.ejps.2021.106087

    Article  CAS  PubMed  Google Scholar 

  40. P. Deng, J. Chen, L. Yao, P. Zhang, J. Zhou, Thymine-modified chitosan with broad-spectrum antimicrobial activities for wound healing. Carbohydr. Polym. 257, 117630 (2021). https://doi.org/10.1016/j.carbpol.2021.117630]

    Article  CAS  PubMed  Google Scholar 

  41. W. Zhu, T. Chen, R. He, Y. Ding, T. Duan, B. Xiao, Understanding the interfacial interactions of bioinspired chitosan-calcite nanocomposites by first principles molecular dynamics simulations and experimental FT-IR spectroscopy. Carbohydr. Polym. 223, 115054 (2019). https://doi.org/10.1016/j.carbpol.2019.115054

    Article  CAS  PubMed  Google Scholar 

  42. B. Gieroba, A. Sroka-Bartnicka, P. Kazimierczak, G. Kalisz, A. Lewalska-Graczyk, V. Vivcharenko, R. Nowakowski, I.S. Pieta, A. Przekora, Surface chemical and morphological analysis of chitosan/1,3-β-d-glucan polysaccharide films cross-linked at 90 °C. Int. J. Mol. Sci. 23(11), 5953 (2022). https://doi.org/10.3390/ijms23115953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D. Ren, Z. Shang, M. Zhang, S. Xu, Z. Xu, The effect of chitosan molecular weight on CO2-triggered switching between emulsification and demulsification. Soft Matter 17(41), 9332–9338 (2021). https://doi.org/10.1039/d1sm01036k

    Article  CAS  PubMed  Google Scholar 

  44. G.E. Chaudhry, C.S. Thirukanthan, K.M. NurIslamiah, Y.Y. Sung, T.S.M. Sifzizul, A.W.M. Effendy, Characterization and cytotoxicity of low-molecular-weight chitosan and chito-oligosaccharides derived from tilapia fish scales. J. Adv. Pharm. Technol. Res. 12(4), 373–377 (2021). https://doi.org/10.4103/japtr.japtr_117_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J. Long, E. Xu, X. Li, Z. Wu, F. Wang, X. Xu, Z. Jin, A. Jiao, X. Zhan, Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-κ-carrageenan nanoparticles. Food Chem. 202, 49–58 (2016). https://doi.org/10.1016/j.foodchem.2016.01.119

    Article  CAS  PubMed  Google Scholar 

  46. R. Kumar, K.H. Prakash, P. Cheang, L. Gower, K.A. Khor, Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films. J. R. Soc. Interface 5(21), 427–439 (2008). https://doi.org/10.1098/rsif.2007.1141

    Article  CAS  PubMed  Google Scholar 

  47. C. Dong, W. Chen, C. Liu, Flocculation of algal cells by amphoteric chitosan-based flocculant. Bioresour. Technol. 170, 239–247 (2014). https://doi.org/10.1016/j.biortech.2014.07.108

    Article  CAS  PubMed  Google Scholar 

  48. K. Kadiya, M. Sharma, S. Ghosh, Effect of the chitosan second layer on the gelation and controlled digestion of Citrem-chitosan bilayer emulsions. Food Funct. 13(5), 2515–2533 (2022). https://doi.org/10.1039/d1fo02409d

    Article  CAS  PubMed  Google Scholar 

  49. W. Feng, Z. Wang, Biomedical applications of chitosan-graphene oxide nanocomposites. iScience 25(1), 103629 (2021). https://doi.org/10.1016/j.isci.2021.103629

  50. A.G. Díaz, D.A. Quinteros, J.M. Llabot, S.D. Palma, D.A. Allemandi, G. Ghersi, V. Zylberman, F.A. Goldbaum, S.M. Estein, Spray dried microspheres based on chitosan: A promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 489–496 (2016). https://doi.org/10.1016/j.msec.2016.01.084

    Article  CAS  PubMed  Google Scholar 

  51. C. Jiang, S. Xu, S. Zhang, L. Jia, Chitosan functionalized magnetic particle-assisted detection of genetically modified soybeans based on polymerase chain reaction and capillary electrophoresis. Anal. Biochem. 420(1), 20–25 (2012). https://doi.org/10.1016/j.ab.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  52. H. Lu, S. Ren, X. Li, J. Guo, G. Dong, J. Li, L. Gao, Poly(ethylene glycol)/chitosan/sodium glycerophosphate gel replaced the joint capsule with slow-release lubricant after joint surgery. J. Biomater. Sci. Polym. Ed. 29(11), 1331–1343 (2018). https://doi.org/10.1080/09205063.2018.1459351

    Article  CAS  PubMed  Google Scholar 

  53. E.Y. Wardhono, M.P. Pinem, I. Kustiningsih, M. Effendy, D. Clausse, K. Saleh, E. Guénin, Heterogeneous deacetylation reaction of chitin under low-frequency ultrasonic irradiation. Carbohydr. Polym. 267, 118180 (2021). https://doi.org/10.1016/j.carbpol.2021.118180

    Article  CAS  PubMed  Google Scholar 

  54. E. Guibal, C. Milot, O. Eterradossi, C. Gauffier, A. Domard, Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. Int. J. Biol. Macromol. 24(1), 49–59 (1999). https://doi.org/10.1016/s0141-8130(98)00067-1

    Article  CAS  PubMed  Google Scholar 

  55. S.L. Wang, C.P. Liu, T.W. Liang, Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr. Polym. 90(3), 1305–1313 (2012). https://doi.org/10.1016/j.carbpol.2012.06.077

    Article  CAS  PubMed  Google Scholar 

  56. W. Shen, Y. Fang, M. Azeem, Y. Gao, X. Li, P. Zhao, A. Ali, M. Li, R. Li, Chitosan crosslinked with polyamine-co-melamine for adsorption of Hg2+: Application in purification of polluted water. Int. J. Biol. Macromol. 181, 778–785 (2021). https://doi.org/10.1016/j.ijbiomac.2021.03.166

    Article  CAS  PubMed  Google Scholar 

  57. I.M. Lipatova, A.A. Yusova, N.V. Losev, E.A. Indeikin, Gelation in solutions of low deacetylated chitosan initiated by high shear stresses. Int. J. Biol. Macromol. 139, 550–557 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.164

    Article  CAS  PubMed  Google Scholar 

  58. B. Huang, Z. Zhang, N. Ding, Y. Zhuang, G. Zhang, P. Fei, Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. Int. J. Biol. Macromol. 194, 246–253 (2022). https://doi.org/10.1016/j.ijbiomac.2021.11.193

    Article  CAS  PubMed  Google Scholar 

  59. K. Kurita, H. Ikeda, Y. Yoshida, M. Shimojoh, M. Harata, Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: Facile preparation of a precursor useful for chemical modifications. Biomacromol 3(1), 1–4 (2002). https://doi.org/10.1021/bm0101163

    Article  CAS  Google Scholar 

  60. L. Liu, Y. Wang, X. Shen, Y. Fang, Preparation of chitosan-g-polycaprolactone copolymers through ring-opening polymerization of epsilon-caprolactone onto phthaloyl-protected chitosan. Biopolymers 78(4), 163–170 (2005). https://doi.org/10.1002/bip.20261

    Article  CAS  PubMed  Google Scholar 

  61. C. Chen, S. Tao, X. Qiu, X. Ren, S. Hu, Long-alkane-chain modified N-phthaloyl chitosan membranes with controlled permeability. Carbohydr. Polym. 91(1), 269–276 (2013). https://doi.org/10.1016/j.carbpol.2012.08.042

    Article  CAS  PubMed  Google Scholar 

  62. B. Harini, S. Rajeshkumar, A. Roy, Biomedical application of chitosan and piper longum-assisted nano zinc oxide-based dental varnish. Appl. Biochem. Biotechnol. 194(3), 1303–1309 (2022). https://doi.org/10.1007/s12010-021-03712-8

    Article  CAS  PubMed  Google Scholar 

  63. A. Pestov, Y. Privar, A. Slobodyuk, A. Boroda, S. Bratskaya, Chitosan cross-linking with acetaldehyde acetals. Biomimetics (Basel) 7(1), 10 (2022). https://doi.org/10.3390/biomimetics7010010

    Article  CAS  PubMed  Google Scholar 

  64. P. Sahariah, B.E. Benediktssdóttir, M.Á. Hjálmarsdóttir, O.E. Sigurjonsson, K.K. Sørensen, M.B. Thygesen, K.J. Jensen, M. Másson, Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n, n-dialkyl chitosan derivatives. Biomacromol 16(5), 1449–1460 (2015). https://doi.org/10.1021/acs.biomac.5b00163

    Article  CAS  Google Scholar 

  65. A.P. Zhu, N. Fang, Adhesion dynamics, morphology, and organization of 3T3 fibroblast on chitosan and its derivative: the effect of O-carboxymethylation. Biomacromol 6(5), 2607–2614 (2005). https://doi.org/10.1021/bm050328q

    Article  CAS  Google Scholar 

  66. W. Al-Mughrabi, A.O. Al-Dossary, A. Abdel-Naby, Free radical copolymerization of diallylamine and itaconic acid for the synthesis of chitosan base superabsorbent. Polymers (Basel) 14(9), 1707 (2022). https://doi.org/10.3390/polym14091707

    Article  CAS  PubMed  Google Scholar 

  67. S. Fang, G. Wang, P. Li, R. Xing, S. Liu, Y. Qin, H. Yu, X. Chen, K. Li, Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 115, 754–761 (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  68. J. Bi, C. Tian, G.L. Zhang, H. Hao, H.M. Hou, Novel procyanidins-loaded chitosan-graft-polyvinyl alcohol film with sustained antibacterial activity for food packaging. Food Chem. 365, 130534 (2021). https://doi.org/10.1016/j.foodchem.2021.130534

    Article  CAS  PubMed  Google Scholar 

  69. D. Zhu, H. Cheng, J. Li, W. Zhang, Y. Shen, S. Chen, Z. Ge, S. Chen, Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater. Sci. Eng. C Mater. Biol. Appl. 61, 79–84 (2016). https://doi.org/10.1016/j.msec.2015.12.024

    Article  CAS  PubMed  Google Scholar 

  70. Y. Shi, L. Liu, M. Yin, Z. Zhao, Y. Liang, K. Sun, Y. Li, Mucus- and pH-mediated controlled release of core-shell chitosan nanoparticles in the gastrointestinal tract for diabetes treatment [published online ahead of print. J. Drug Target 1–9 (2022). https://doi.org/10.1080/1061186X.2022.2104296

  71. Y.A. Skorik, C.A. Gomes, M.T. Vasconcelos, Y.G. Yatluk, N-(2-Carboxyethyl)chitosans: regioselective synthesis, characterisation and protolytic equilibria. Carbohydr. Res. 338(3), 271–276 (2003). https://doi.org/10.1016/s0008-6215(02)00432-9

    Article  CAS  PubMed  Google Scholar 

  72. W. Sajomsang, P. Gonil, S. Tantayanon, Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization. Int. J. Biol. Macromol. 44(5), 419–427 (2009). https://doi.org/10.1016/j.ijbiomac.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  73. S. Cao, P. Gao, W. Xia, S. Liu, B. Wang, A novel chitosanase from penicillium oxalicum M2 for chitooligosaccharide production: Purification Identification and Characterization. Mol. Biotechnol. 64(9), 947–957 (2022). https://doi.org/10.1007/s12033-022-00461-9

    Article  CAS  PubMed  Google Scholar 

  74. S. Keely, A. Rullay, C. Wilson, A. Carmichael, S. Carrington, A. Corfield, D.M. Haddleton, D.J. Brayden, In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly (methacrylate) and N-trimethylated chitosan polymers. Pharm. Res. 22(1), 38–49 (2005). https://doi.org/10.1007/s11095-004-9007-1

    Article  CAS  PubMed  Google Scholar 

  75. H. Jing, X. Du, L. Mo, H. Wang, Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy. Int. J. Biol. Macromol. 192, 1169–1177 (2021). https://doi.org/10.1016/j.ijbiomac.2021.10.072

    Article  CAS  PubMed  Google Scholar 

  76. A. Ortega, A. Sánchez, G. Burillo, Binary graft of poly(N-vinylcaprolactam) and poly(acrylic acid) onto chitosan hydrogels using ionizing radiation for the retention and controlled release of therapeutic compounds. Polymers (Basel) 13(16), 2641 (2021). https://doi.org/10.3390/polym13162641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. L. Ding, Z. Liu, S. Song, M.A. Abubaker, L. Chen, J. Shi, Z. Fan, J. Zhang, Structural characteristics and rheological properties of hydroxypropyl trimethyl ammonium chloride chitosan. Int. J. Biol. Macromol. 216, 312–321 (2022). https://doi.org/10.1016/j.ijbiomac.2022.06.175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Butnariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butnariu, M. (2023). Biological and Chemical Aspects of Chitosan. In: Swain, S.K., Biswal, A. (eds) Chitosan Nanocomposites. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9646-7_2

Download citation

Publish with us

Policies and ethics