Skip to main content

Investigation of Chitosan/Metal and Metal Oxide Nanocomposites as a New Strategy for Enhanced Anti-Biofilm Efficacy with Reduced Toxicity

  • Chapter
  • First Online:
Chitosan Nanocomposites

Abstract

Worldwide, biofilm producing bacteria are the most challenging and careful concern, responsible for variety of infections in human every year. The clumping of sessile bacterial cells attached to each other in the inherent surfaces and embedded in an extracellular polymeric matrix is referred as a biofilm. Biofilm producing bacteria and their mode of dissemination are more resistance to conventional antibiotics and immune response killing. Researchers are more struggled and investigated alternative anti-biofilm drugs with novel strategies to combat antibiotic resistant biofilm producing bacteria. In recent years, metal and metal oxide nanoparticles are widely used nanomaterials with promising applications in medical field and offer novel approaches to tackle different kind of pathogens. On contrary, increased concentrations of nanomaterial with considerable level of toxicity against various infections in medical field are great challenge. To avoid this problem, nano-formulation demonstrates hopeful choice to succeed improved bioavailability and targeted drug delivery. Chitosan (Cs) is a natural polymer derived from derivatives of chitin which is extensively used in biomedical research due to the complete degradation and biocompatibility. Metal nanoparticles (M NPs) and metal oxide nanoparticles (MO NPs) have wide surface area and frequently utilized in biomedical research because of their inert biological properties. In recent years, the preparation of Cs/metal nanocomposites (Cs/M NCs)and Cs/metal oxide nanocomposites (Cs/MO NCs) are safer, chemically stable, and have excellent bioavailability and biocompatibility with minimized toxicities against various infectious bacteria. Hence, the main objective of this work is to discuss the alternative way to increase the bioavailability of M NPs and MO NPs in the presence of Cs to treat biofilm producing bacteria with minimized toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Swarup, R. Jong-Whan, Fabrication of chitosan-based functional nanocomposite films: Effect of quercetin-loaded chitosan nanoparticles. Food Hydrocolloids 121, 107065 (2021)

    Article  Google Scholar 

  2. S. Sandeep, S. Gurpreet, B. Niraj, A. Kanika, Characterization and preparation of Fe3O4 nanoparticles loaded bioglass chitosan nanocomposite coating on Mg alloy and in vitro bioactivity assessment. Int. J. Biol. Macromol. 151, 519–528 (2020)

    Article  Google Scholar 

  3. M.M. Hany, M.E. Nagi, M.A. Ahmed, M.I. Mohamed, M.E. Ibrahim, Potential of chitosan nanoparticle/fluoride nanocomposite for reducing the toxicity of fluoride an in-vivo study on the rat heart functions: Hematopoietic and immune systems. Int. J. Biol. Macromol. 216, 251–262 (2022)

    Article  Google Scholar 

  4. F.N. Ozioma, S. Sudarshan, S. Paosena, K. Vongkamjan, P.V. Supayang, Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci. 36, 100609 (2020)

    Google Scholar 

  5. L. Huixing, S.M. Maryam, A. Azadeh, B. Hadi, L. Xiang, S.-S. Saeed, T. Davood, K. Amirsalar, Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method. Mater. Chem. Phys. 279, 125770 (2022)

    Article  Google Scholar 

  6. R. Mahdi, A. Raman, S.K. Hossein, S.-I. Vahid, A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: Structural and biological properties. Mater. Sci. Eng. C 101, 360–369 (2019)

    Article  Google Scholar 

  7. Z. Xiaonan, Y. Hui, X. Lu, L. Zhikun, M. Chuang, X. Wei, W. Yingbo, Chitosan regulated electrochemistry for dense hydroxyapatite/MgO nanocomposite coating with antibiosis and osteogenesis on titanium alloy. Colloid Interface Sci. Commun. 48, 100616 (2022)

    Article  Google Scholar 

  8. B. Nishat, K. Asha, T. Nitika, S. Gaurav, S. Ragini Raj, S. Rahul, Phytochemically stabilized chitosan encapsulated Cu and Ag nanocomposites to remove cefuroxime axetil and pathogens from the environment. Int. J. Biol. Macromol. 212, 451–464 (2022)

    Article  Google Scholar 

  9. A.-T. Ghasem, I. Alireza, O.A. Zahra, H.T. Adel, Synthesis and characterization of chitosan encapsulated zinc oxide (ZnO) nanocomposite and its biological assessment in pepper (Capsicum annuum) as an elicitor for in vitro tissue culture applications. Int. J. Biol. Macromol. 189, 170–182 (2021)

    Article  Google Scholar 

  10. D.S. Vidya, A. Atif, A. Oyouni, M.H. Yousef, S.A. Saad Ali, M.Al.A. Osama, Al.Z. Waseem, H.M. Ahmad, Chemopreventive role of tin oxide-chitosan-polyethylene glycol-crocin nanocomposites against lung cancer: An in vitro and in vivo approach. Process Biochem. 120, 186–194 (2022)

    Google Scholar 

  11. J. Zheng, H. Gaowei, Z. Kai, Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohyd. Polym. 283, 119174 (2022)

    Article  Google Scholar 

  12. W. Jun, W. Xinyu, L. Haiwen, Q. Mingyue, S. Wenbin, Y. Xu, Z. Zheng, L. Binbin, A hollow chitosan-coated PLGA microsphere to enhance drug delivery and anticancer efficiency. J. Drug Deliv. Sci. Technol. 73, 103482 (2022)

    Article  Google Scholar 

  13. G. Rajivgandhi, C. Gnanasekaran, R. Govindan, C. Chenthis Kanisha, M. Maruthupandy, Q. Franck, A.M. Ramzi, M.N. Omar, A.S. Nasir, L. Wen-Jun, Effective removal of biofilm formation in Acinetobacter baumannii using chitosan nanoparticles loaded plant essential oils. J. King Saud Univ. Sci. 34, 101845 (2022)

    Article  Google Scholar 

  14. M. Su, M. Doris, H. Feng, L. Matthias, S.S. Berit, T. Yulong, Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohyd. Polym. 241, 116254 (2020)

    Article  Google Scholar 

  15. E. Dounia, F.E. Walid, S.El-S. Gharieb, Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb. Pathogen. 170, 105721 (2022)

    Google Scholar 

  16. P. Krishna Kumar, T. Muktanand, P. Nidhi, A. Ashish Kumar, G. Shilpkala, A. Meraj, T. Ragini, S. Sanjay, Alginate lyase immobilized chitosan nanoparticles of ciprofloxacin for the improved antimicrobial activity against the biofilm associated mucoid P. aeruginosa infection in cystic fibrosis. Int. J. Pharmaceut. 563, 30–42 (2019)

    Google Scholar 

  17. P. Andi Dian, A. Qonita Kurni, E.U. Sartini, V.-Z. Fabiana, J.P. Alejandro, M.E. Yayu, A.M. Sandra, P. Muh. Rezky, N.T. Irma, F.D. Ryan, Selective delivery of silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive microparticles loaded into dissolving microneedles. Mater. Sci. Eng. C 120, 111786 (2021)

    Google Scholar 

  18. T. Nuttaya, P. Rattiyaphorn, P. Jakkapat, C. Pisit, K. Somdej, K. Kwanjai, C. Sorujsiri, Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. Int. J. Biol. Macromol. 201, 676–685 (2022)

    Article  Google Scholar 

  19. R. Vinit, Y.-G. Yeseul Kim, J.H. Kim, J.L. Lee, Chitosan-gum Arabic embedded alizarin nanocarriers inhibit biofilm formation of multispecies microorganisms. Carbohydr. Polym. 284, 118959 (2022)

    Google Scholar 

  20. A.A. Zeinab, S. Zahra, S. Reza, H. Elham, Esmaeil, Darabpour Cu(II) metal-organic framework@Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous Mesoporous Mater. 336, 111866 (2022)

    Article  Google Scholar 

  21. S. Zahra, M.-J. Azin, Molecular dynamics simulations on chitosan/graphene nanocomposites as anticancer drug delivery using systems. Chin. J. Phys. 66, 362–382 (2020)

    Article  Google Scholar 

  22. S. Ishita, B. Aalok, Chitosan based injectable hydrogels for smart drug delivery applications. Sens. Int. 3, 100168 (2022)

    Article  Google Scholar 

  23. A.M. Sheril, P. Arul Prakash, M.S. Mohamed Jaabir, S. Dhanavel, R. Manikandan, A. Stephen, Dopamine-conjugated CuS/chitosan nanocomposite for targeted photothermal drug delivery: In vitro cytotoxicity study to establish bio-compatibility. J. Drug Deliv. Sci. Technol. 61, 102193 (2021)

    Google Scholar 

  24. K. Viswanathan, S.A. Mohamad, D. Sandhanasamy, G. Kasi, A. Ayyakannu, G. Marimuthu, Chitosan overlaid Fe3O4/Rgo nanocomposite for targeted drug delivery, imaging, and biomedical applications. Sci. Report. 10, 18912 (2020)

    Article  Google Scholar 

  25. P. Neema, B. Bhashkar Singh, T. Himani, P. Mintu, N. Pushpa Bhakuni, D. Anirban, S.P.S. Mehta, S. Nanda Gopal, Development of biodegradable chitosan/graphene oxide nanocomposite via spray drying method for drug loading and delivery application. J. Drug Deliv. Sci. Technol. 74, 103555 (2022)

    Google Scholar 

  26. J. Huang, J. Jacobsen, N. Genina, S.W. Larsen, H.M. Nielsen, A. Müllertz, H. Mu, Investigating the effect of graphene oxide in chitosan/alginate-based foams on the release and antifungal activity of clotrimazole in vitro. Eur. J. Pharm. Sci. 174, 106204 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. Y.E. Noura, A.M. Nadia, A.A. Nahed, Evaluation of the antimicrobial and anti-biofilm activity of novel salicylhydrazido chitosan derivatives impregnated with titanium dioxide nanoparticles. Int. J. Biol. Macromol. 205, 719–730 (2022)

    Article  Google Scholar 

  28. C. Danya, L. Pei, L. Mengna, Z. Changqing, G. Youshui, G. Yaping, Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration. Carbohyd. Polym. 291, 119575 (2022)

    Article  Google Scholar 

  29. S. Wentao, Z. Xuan, B. Lu, D. Yao, W. Zhe, Z. Yanjun, Y. Shuang, Z. Zhijian, Z. Peng, T. Hong, W. Qing, L. Xiaojie, Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing. Int. J. Biol. Macromol. 204, 441–456 (2022)

    Article  Google Scholar 

  30. H. Sana, M.S. Rai, A.S. Muhammad, M. Asif, H. Zahid, Smart mucoadhesive buccal chitosan/HPMC scaffold for sore throat: In vitro, ex vivo and pharmacokinetic profiling in humans. J. Drug Deliv. Sci. Technol. 71, 103271 (2022)

    Article  Google Scholar 

  31. L. Roshini Yadav, K. Balagangadharan, K. Lavanya, N. Selvamurugan, Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci. 299, 120559 (2022)

    Google Scholar 

  32. X. Ji, S. Hongwei, L. Xiaohong, W.U. Muhammad, L. Guowen, X. Ziyang, M. Limin, H. Xuecheng, L. Zehua, L. Qian, J. Xulin, Y. Guang, Z. Yu, Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 285, 121530 (2022)

    Google Scholar 

  33. P.M. Eduardo, C.A.M. Virginia, M.H. Marilia, M.G.P. Ana, Influence of blend ratio and mangosteen extract in chitosan/collagen gels and scaffolds: Rheological and release studies. Carbohyd. Polym. 292, 119647 (2022)

    Article  Google Scholar 

  34. P. Narmatha Christy, S. Khaleel Basha, V. Sugantha Kumari, Nano zinc oxide and nano bioactive glass reinforced chitosan/poly(vinyl alcohol) scaffolds for bone tissue engineering application. Mater. Today Commun. 31, 103429 (2022)

    Article  Google Scholar 

  35. G. Huang, Y. Liu, L. Chen, Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 24, 108–113 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  36. A. Azin, H. Shadi, K. Sepideh, Green synthesized-silver nanoparticles coated with targeted chitosan nanoparticles for smart drug delivery. J. Drug Deliv. Sci. Technol. 74, 103554 (2022)

    Article  Google Scholar 

  37. H. Wei-Ting, L. Mikael, L. Yi-Chi, L. Dean-Mo, C. Guang-Yuh, Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. Eur. J. Pharm. Biopharm. 109, 165–173 (2016)

    Article  Google Scholar 

  38. W. Chenqu, Z. Yanyan, L. Fan, B. Songhua, P. Ming, F. Li, Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochem. 120, 265–274 (2022)

    Article  Google Scholar 

  39. S. Kariminia, A. Shamsipur, M. Shamsipur, Analytical characteristics and application of novel chitosan coatedmagnetic nanoparticles as an efficient drug delivery system forciprofloxacin Enhanced drug release kinetics by low-frequencyultrasounds. J. Pharmaceut. Biomed. Anal. 129, 450–457 (2016)

    Article  CAS  Google Scholar 

  40. Y. Ding, Z.S. Shirley, S. Huadong, S. Kangning, L. Futian, Q. Yushi, Y. Jun, Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater. Sci. Eng. C 48, 487–498 (2015)

    Google Scholar 

  41. M. Ikram, K. Chaudhary, A. Shahzadi, A. Haider, I. Shahzadi, A. Ul-Hamid, N. Abid, J. Haider, W. Nabgan, A.R. Butt, Mentha pulegium extract for packaging applications. Surf. Interfaces 34, 102349 (2022)

    Google Scholar 

  42. K. Sanket, S.P. Balwant, N.S. Brahma, Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb. Pathog. 170, 105678 (2022)

    Article  Google Scholar 

  43. M.J. Kanchan, S. Amruta, K. Umesh, K.N. Latesh, A.P. Ramdas, S. Jaiprakash, B.K. Bharat, V.S. Ajay, P. Rajendra, G.C. Manohar, Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Biomater. Adv. 134, 112592 (2022)

    Article  Google Scholar 

  44. G. Rajivgandhi, M. Maruthupandy, T. Muneeswaran, M. Anand, F. Quero, N. Manoharan, L. Wen-Jun, Biosynthesized silver nanoparticles for inhibition of antibacterial resistance and biofilm formation of methicillin-resistant coagulase negative Staphylococci. Bioorganic Chem. 89, 103008 (2019)

    Google Scholar 

  45. L. Jin-Hyung, K. Yong-uy, H.C. Moo, L. Jintae, ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formationand virulence factor production. Microbiol. Res. 169, 888–896 (2014)

    Article  Google Scholar 

  46. M.-C. Elizabeth, G.-R. Myriam De la, I.R. C´esar, T.-G. Patricia, A.G.-N. Marco, A.G-N., U.-B. Victor, A.M.R. María, G.-F. Ricardo, Antimicrobial activity and inhibition of biofilm formation in vitro and on human dentine by silver nanoparticles/carboxymethyl-cellulose composites. Arch. Oral Biol. 120, 104943 (2020)

    Google Scholar 

  47. M. Maruthupandy, G. Rajivgandhi, S. Kadaikunnan, T. Veeramani, N.S. Alharbi, T. Muneeswaran, J.M. Khaled, Wen Jun, L., K.F. Alanzi, Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumonia. Carbohydr. Polym. 230, 115646 (2020)

    Google Scholar 

  48. Y.K. Mohanta, K. Biswas, S.K. Jena, A. Hashem, E.F. Abd_Allah, T.K. Mohanta, Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front. Microbiol. 11, 1143 (2020)

    Google Scholar 

  49. G. Rajivgandhi, G. Ramachandran, M. Maruthupandy, N. Manoharan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, T.N. Almanaa, Wen-Jun, L., Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumonia. Colloids Surf. A 600, 124830 (2020)

    Google Scholar 

  50. Q. Faizan Abul, A. Iqbal, A. Mohammad, M. Salim, F.Al.-R. Basel, S.A.A. Mohammed, A.A. Yaser, Biofabricated silver nanoparticles exhibit broadspectrum antibiofilm and antiquorum sensing activity against Gram-negative bacteria. RSC Adv. 11, 13700 (2021)

    Google Scholar 

  51. J. Tang, W. Wang, W. Chu, Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed (Hizikia fusiforme). Front. Cell. Infect. Microbiol. 10, 586750 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A.Q. Faizan, S.K. Mohammad, A. Iqbal, M.H. Fohad, A.K. Rais, H. Iftekhar, A.S. Syed, A. Walaa, Coumarin exhibits broad-spectrum antibiofilm and antiquorum sensing activity against gram-negative bacteria: In Vitro and In Silico Investigation. ACS Omega 6, 18823–18835 (2021)

    Article  Google Scholar 

  53. S.D. Murugesan, T. Ramar, S. Periasamy, A. Sridhar, S. Srinivasan, T. Ramasamy, Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 90, 282–294 (2018)

    Article  CAS  Google Scholar 

  54. S. Xueying, W. Lei, L. Liu, L. Jianke, W. Xiaoxia, Impact of tea tree essential oil and citric acid/choline chloride on physical, structural and antibacterial properties of chitosan-based films. Food Control 141, 109186 (2022)

    Article  Google Scholar 

  55. M. Maruthupandy, G. Rajivgandhi, F. Quero, L. Wen-Jun, Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against Pseudomonas aeruginosa. J. Environ. Chem. Eng. 8, 104533 (2020)

    Google Scholar 

  56. K. Suganya, S. Gowtham, M. Murugan, Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhetinic acid. Microb. Pathog. 126, 332–342 (2019)

    Article  Google Scholar 

  57. L. Hua, C. Beibei, L. Jiangyang, L. Wenzhe, W. Dianhui, W. Jian, C. Xingguang, Effect of hydroxypr1opylation on physical properties, antifungal and mycotoxin inhibitory activities of clove oil emulsions coated with chitosan. Food Biosci. 50, Part B, 102159 (2022)

    Google Scholar 

  58. M.M. Zirar, A.O. Akeem, Y. Elvan, Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. Int. J. Polym. Mater. Polym. Biomater. 70, 383–391 (2021)

    Article  Google Scholar 

  59. A.M.F. Mohammad, Y.F.T. Farha, S.I.A. Sundos, K. Haliza, Roles of chitosan in synthesis, antibacterial and anti-biofilm properties of bionano silver and gold. RSC Adv. 12, 19297 (2022)

    Article  Google Scholar 

  60. K. Achyut, K. Sanjeeb, K. Jibon, C. Devasish, Chitosan−iron oxide coated graphene oxide nanocomposite hydrogel: A robust and soft antimicrobial biofilm. ACS Appl. Mater. Interfaces 8, 20625–20634 (2016)

    Article  Google Scholar 

  61. M. Muthuchamy, R. Govindan, K. Shine, V. Thangasamy, S.A. Naiyf, M. Thillaichidambaram, M.K. Jamal, L. Wen Jun, F.A. Khalid, Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumonia. Carbohydr. Polym. 230, 115646 (2020)

    Google Scholar 

  62. P. Abdul Rasheed, A.J. Khadeeja, R. Kashif, P.P. Ravi, H.S. Mostafa, H. Mohamed, S. Ayman, M.A. Aboubakr, A.M. Khaled, Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. Corros. Sci. 148, 397–406 (2019)

    Google Scholar 

  63. E.M.B. Mona Shaban, M.R. Omnia Karem, F.A. Taher, A.Z. Samar, Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int. J. Biol. Macromol. 149, 1109–1117 (2020)

    Google Scholar 

  64. A. Sanaz, M. Omid, J. Fatemeh Nasiri, T. Majid Jafar, G. Morteza Sasani, S. Somayeh Salmani, M.A. Mohammad Hossein, L. Kyu-Yeon, P. Hyung-Ho, Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surfaces Interfaces 34, 102349 (2022)

    Article  Google Scholar 

  65. T. Yulong, M. Su, L. Matthias, M. Doris, M.H. Greta, W. Jia, E. Dominik, S.S. Berit, Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohyd. Polym. 200, 35–42 (2018)

    Article  Google Scholar 

  66. M. Pérez-Díaz, E. Alvarado-Gomez, M. Magaña-Aquino, R. Sánchez Sánchez, C. Velasquillo, C. Gonzalez, A. Ganem-Rondero, G. Martínez-Castañon, N. Zavala-Alonso, F. Martinez-Gutierrez, Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater. Sci. Eng. C 60, 317–323 (2016)

    Google Scholar 

  67. T. Rajagopalan, M. Balasubramanian, V. Sekar, S. Jeyachandran, J. Raja, S. Sathappan, V. Baskaralingam, R. Palaniappan, S. Avinash, Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 100, 124–132 (2016)

    Article  Google Scholar 

  68. J. Hua, M.G. Vijver, M.K. Richardson, F. Ahmad, W.J.G.M. Peijnenburg, Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio) Environ. Toxicol. Chem. 33, 2859–2868 (2014). https://doi.org/10.1002/etc.2758

    Article  CAS  Google Scholar 

  69. G. Rudramurthy, M. Swamy, U. Sinniah, A. Ghasemzadeh, Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016). https://doi.org/10.3390/molecules21070836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7, 1063–1077 (2010). https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. L. Wei, J. Lu, H. Xu, A. Patel, Z.-S. Chen, G. Chen, Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today. 20, 595–601 (2015). https://doi.org/10.1016/j.drudis.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  72. C. Levard, E.M. Hotze, B.P. Colman, A.L. Dale, L. Truong, X.Y. Yang, A.J. Bone, G.E. Brown, R.L. Tanguay, R.T. Di Giulio et al., Sulfidation of silver nanoparticles: Natural antidote to their toxicity. Environ. Sci. Technol. 47, 13440–13448 (2013). https://doi.org/10.1021/es403527n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Shakiba, O. Zenasni, M.D. Marquez, L.T. Randall, Advanced drug delivery via self-assembled monolayer-coated nanoparticles. AIMS Bioeng. 4, 275–299 (2017). https://doi.org/10.3934/bioeng.2017.2.275

    Article  CAS  Google Scholar 

  74. A.V. Zvyagin, X. Zhao, A. Gierden, W. Sanchez, J.A. Ross, M.S. Roberts, Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J. Biomed. Opt. 13, 064031 (2008). https://doi.org/10.1117/1.3041492

    Article  CAS  PubMed  Google Scholar 

  75. B. Wang, W. Feng, M. Wang, T. Wang, Y. Gu, M. Zhu, H. Ouyang, J. Shi, F. Zhang, Y. Zhao et al., Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res. 10, 263–276 (2008). https://doi.org/10.1007/s11051-007-9245-3

    Article  CAS  Google Scholar 

  76. D. Ungor, I. Dékány, E. Csapó, Reduction of tetrachloroaurate(Iii) ions with bioligands: Role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomaterials 9, 1229 (2019). https://doi.org/10.3390/nano9091229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. A. Sironmani, K. Daniel, Drug discovery and development present and future (IntechOpen, London, UK, 2011). Silver nanoparticles—Universal multifunctional nanoparticles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications

    Google Scholar 

Download references

Acknowledgements

Dr. G. Rajivgandhi and Dr. Franck Quero acknowledge the financial support from ANID-FONDECYT (Chile) under the Postdoctoral Fellowship No. 3220019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muthuchamy Maruthupandy or Franck Quero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajivgandhi, G., Maruthupandy, M., Quero, F. (2023). Investigation of Chitosan/Metal and Metal Oxide Nanocomposites as a New Strategy for Enhanced Anti-Biofilm Efficacy with Reduced Toxicity. In: Swain, S.K., Biswal, A. (eds) Chitosan Nanocomposites. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9646-7_15

Download citation

Publish with us

Policies and ethics