Skip to main content

Equipment and Devices of Extracorporeal Life Support

  • Chapter
  • First Online:
Extracorporeal life support
  • 558 Accesses

Abstract

Extracorporeal life support (ECLS) is a direct extension of cardiopulmonary bypass technology used for providing supports to patient with cardiorespiratory failure despite maximum conventional therapy. The blood drained from an outflow cannula gets oxygenated and decarboxylated before it returns through an inflow cannula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonald JV, Green TP, Steinhorn RH. The role of the centrifugal pump in hemolysis during neonatal extracorporeal support. ASAIO J. 1997;43(1):35–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kawahito K, Nosé Y. Hemolysis in different centrifugal pumps. Artif Organs. 1997;21(4):323–6.

    Article  CAS  PubMed  Google Scholar 

  3. Steinhorn RH, Isham-Schopf B, Smith C, Green TP. Hemolysis during long-term extracorporeal membrane oxygenation. J Pediatr. 1989;115(4):625–30.

    Article  CAS  PubMed  Google Scholar 

  4. Lehle K, Lubnow M, Philipp A, et al. Prevalence of hemolysis and metabolic acidosis in patients with circulatory failure supported with extracorporeal life support: a marker for survival? Eur J Heart Fail. 2017;19(Suppl 2):110–6.

    Article  CAS  PubMed  Google Scholar 

  5. Tamari Y, Lee-Sensiba K, Leonard EF, Parnell V, Tortolani AJ. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps. Guidelines for choosing a blood pump. J Thorac Cardiovasc Surg. 1993;106(6):997–1007.

    Article  CAS  PubMed  Google Scholar 

  6. Mendler N, Podechtl F, Feil G, Hiltmann P, Sebening F. Seal-less centrifugal blood pump with magnetically suspended rotor: rot-a-flot. Artif Organs. 1995;19(7):620–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lawson DS, Lawson AF, Walczak R, et al. North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers. J Extra Corpor Technol. 2008;40(3):166–74.

    PubMed  PubMed Central  Google Scholar 

  8. Tamari Y, Lee-Sensiba K, King S, Hall MH. An improved bladder for pump control during ECMO procedures. J Extra Corpor Technol. 1999;31(2):84–90.

    CAS  PubMed  Google Scholar 

  9. Schaadt J. Fiber manufacturing, membrane classification, and winding technologies associated with membrane oxygenators. J Extra Corpor Technol. 1998;30(1):30–4.

    CAS  PubMed  Google Scholar 

  10. Thiara AP, Hoel TN, Kristiansen F, Karlsen HM, Fiane AE, Svennevig JL. Evaluation of oxygenators and centrifugal pumps for long-term pediatric extracorporeal membrane oxygenation. Perfusion. 2007;22(5):323–6.

    Article  CAS  PubMed  Google Scholar 

  11. Eash HJ, Jones HM, Hattler BG, Federspiel WJ. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J. 2004;50(5):491–7.

    Article  PubMed  Google Scholar 

  12. Horton S, Thuys C, Bennett M, Augustin S, Rosenberg M, Brizard C. Experience with the Jostra Rotaflow and QuadroxD oxygenator for ECMO. Perfusion. 2004;19(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  13. Segers PA, Heida JF, de Vries I, Maas C, Boogaart AJ, Eilander S. Clinical evaluation of nine hollow-fibre membrane oxygenators. Perfusion. 2001;16(2):95–106.

    Article  CAS  PubMed  Google Scholar 

  14. Augustin S, Horton A, Butt W, Bennett M, Horton S. Centrifugal pump inlet pressure site affects measurement. Perfusion. 2010;25(5):313–20.

    Article  PubMed  Google Scholar 

  15. Peek GJ, Firmin RK. The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation. ASAIO J. 1999;45(4):250–63.

    Article  CAS  PubMed  Google Scholar 

  16. Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med. 2013;14(2):e77–84.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Uden DL, Payne NR, Kriesmer P, Cipolle RJ. Procedural variables which affect activated clotting time test results during extracorporeal membrane oxygenation therapy. Crit Care Med. 1989;17(10):1048–51.

    Article  CAS  PubMed  Google Scholar 

  18. Seay RE, Uden DL, Kriesmer PJ, Payne NR. Predictive performance of three methods of activated clotting time measurement in neonatal ECMO patients. ASAIO J. 1993;39(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  19. Bosch YP, Ganushchak YM, de Jong DS. Comparison of ACT point-of-care measurements: repeatability and agreement. Perfusion. 2006;21(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  20. Maul TM, Wolff EL, Kuch BA, Rosendorff A, Morell VO, Wearden PD. Activated partial thromboplastin time is a better trending tool in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2012;13(6):e363–71.

    Article  PubMed  Google Scholar 

  21. Chan AK, Black L, Ing C, Brandão LR, Williams S. Utility of aPTT in monitoring unfractionated heparin in children. Thromb Res. 2008;122(1):135–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ignjatovic V, Furmedge J, Newall F, et al. Age-related differences in heparin response. Thromb Res. 2006;118(6):741–5.

    Article  CAS  PubMed  Google Scholar 

  23. Khaja WA, Bilen O, Lukner RB, Edwards R, Teruya J. Evaluation of heparin assay for coagulation management in newborns undergoing ECMO. Am J Clin Pathol. 2010;134(6):950–4.

    Article  CAS  PubMed  Google Scholar 

  24. Liveris A, Bello RA, Friedmann P, et al. Anti-factor Xa assay is a superior correlate of heparin dose than activated partial thromboplastin time or activated clotting time in pediatric extracorporeal membrane oxygenation*. Pediatr Crit Care Med. 2014;15(2):e72–9.

    Article  PubMed  Google Scholar 

  25. Bembea MM, Schwartz JM, Shah N, et al. Anticoagulation monitoring during pediatric extracorporeal membrane oxygenation. ASAIO J. 2013;59(1):63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Irby K, Swearingen C, Byrnes J, Bryant J, Prodhan P, Fiser R. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: a retrospective pediatric study. Pediatr Crit Care Med. 2014;15(4):e175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Northrop MS, Sidonio RF, Phillips SE, et al. The use of an extracorporeal membrane oxygenation anticoagulation laboratory protocol is associated with decreased blood product use, decreased hemorrhagic complications, and increased circuit life. Pediatr Crit Care Med. 2015;16(1):66–74.

    Article  PubMed  Google Scholar 

  28. Kostousov V, Nguyen K, Hundalani SG, Teruya J. The influence of free hemoglobin and bilirubin on heparin monitoring by activated partial thromboplastin time and anti-Xa assay. Arch Pathol Lab Med. 2014;138(11):1503–6.

    Article  PubMed  Google Scholar 

  29. Alexander DC, Butt WW, Best JD, Donath SM, Monagle PT, Shekerdemian LS. Correlation of thromboelastography with standard tests of anticoagulation in paediatric patients receiving extracorporeal life support. Thromb Res. 2010;125(5):387–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Q. (2023). Equipment and Devices of Extracorporeal Life Support. In: Hei, F., Guan, Y., Yu, K. (eds) Extracorporeal life support. Springer, Singapore. https://doi.org/10.1007/978-981-19-9275-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9275-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9274-2

  • Online ISBN: 978-981-19-9275-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics