Abstract
Hydrogen is environment friendly, it does not generate polluting emissions during its combustion. Currently, most of the hydrogen production comes from petroleum-derived fuels where industrial processes intervene to obtain gaseous hydrogen, some of them include reforming with natural gas, partial oxidation of methane, and coal gasification. Other processes involve the thermochemical splitting of water. Other processes involve thermochemical water-splitting, photoelectrochemical water-splitting, and electrolysis of water. Nevertheless, biological approaches are being investigated by hydrogen production (biohydrogen). Such methods include biomass-derived liquid reforming, biomass gasification, photobiological processes, and microbial biomass conversion, which are biotechnology oriented. This chapter will deal with biohydrogen production from biomass, the benefits, drawbacks involved, and applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adessi A, Torzillo G, Baccetti E, De Philippis R (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50L tubular photobioreactor. Int J Hydrog Energy 37:8840–8849. https://doi.org/10.1016/j.ijhydene.2012.01.081
Akhlaghi N, Najafpour-Darzi G (2020) A comprehensive review on biological hydrogen production. Int J Hydrog Energy 45:22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182
Allakhverdiev SI, Thavasi V, Kreslavski VD et al (2010) Photosynthetic hydrogen production. J Photochem Photobiol C: Photochem Rev 11:101–113. https://doi.org/10.1016/j.jphotochemrev.2010.07.002
Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. https://doi.org/10.1016/j.pecs.2008.06.002
Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36:7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116
Azbar N, Dokgöz FT, Keskin T et al (2009) Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy 6:192–200. https://doi.org/10.1080/15435070902785027
Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173. https://doi.org/10.1016/j.rser.2013.11.022
Basak B, Jeon B-H, Kim TH et al (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sust Energ Rev 133:110338. https://doi.org/10.1016/j.rser.2020.110338
Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrog Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093
Benemann J (1996) Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14:1101–1103. https://doi.org/10.1038/nbt0996-1101
Bisaillon A, Turcot J, Hallenbeck PC (2006) The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrog Energy 31:1504–1508. https://doi.org/10.1016/j.ijhydene.2006.06.016
Boboescu IZ, Gherman VD, Mirel I et al (2014) Simultaneous biohydrogen production and wastewater treatment based on the selective enrichment of the fermentation ecosystem. Int J Hydrog Energy 39:1502–1510. https://doi.org/10.1016/j.ijhydene.2013.08.139
Bundhoo MAZ, Mohee R, Hassan MA (2015) Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J Environ Manag 157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006
Bundhoo ZMA (2017a) Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: a review. Int J Hydrog Energy 42:26667–26686. https://doi.org/10.1016/j.ijhydene.2017.09.050
Bundhoo ZMA (2017b) Effects of microwave and ultrasound irradiations on dark fermentative bio-hydrogen production from food and yard wastes. Int J Hydrog Energy 42:4040–4050. https://doi.org/10.1016/j.ijhydene.2016.10.149
Burton CH, Turner C (2003) Manure management: treatment strategies for sustainable agriculture. Editions Quae
Chaganti SR, Kim D-H, Lalman JA (2012) Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renew Energy 48:117–121. https://doi.org/10.1016/j.renene.2012.04.015
Chandra RP, Bura R, Mabee WE et al (2007) Substrate Pretreatment: the key to effective enzymatic hydrolysis of Lignocellulosics? In: Olsson L (ed) Biofuels. Springer, Berlin, Heidelberg, pp 67–93
Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239
Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28. https://doi.org/10.1016/S0360-3199(00)00058-6
Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057. https://doi.org/10.1016/j.ijhydene.2008.07.098
Demirbas A (2009) Biohydrogen. In: Biohydrogen: For Future Engine Fuel Demands. Springer, London, pp 163–219
Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. John Wiley & Sons
Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132. https://doi.org/10.1074/jbc.M008470200
Ghiasian M (2019) Biophotolysis-based hydrogen production by cyanobacteria. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 161–184
Ghirardi ML, Zhang L, Lee JW et al (2000) Microalgae: a green source of renewable H(2). Trends Biotechnol 18:506–511. https://doi.org/10.1016/s0167-7799(00)01511-0
Ghosh S, Dairkee UK, Chowdhury R, Bhattacharya P (2017) Hydrogen from food processing wastes via photofermentation using purple non-sulfur bacteria (PNSB) – a review. Energy Convers Manag 141:299–314. https://doi.org/10.1016/j.enconman.2016.09.001
Gibbs M, Hollaender A, Kok B, et al (1974) Proceedings of the workshop on bio-solar conversion held at Bethesda, Maryland, 5--6 September 1973. Indiana Univ., Bloomington (USA)
Gouveia L, Passarinho PC (2017) Biomass conversion technologies: biological/biochemical conversion of biomass. In: Rabaçal M, Ferreira AF, Silva CAM, Costa M (eds) Biorefineries: targeting energy, high value products and waste valorisation. Springer International Publishing, Cham, pp 99–111
Grimes C, Varghese O, Ranjan S (2007) Light, water, hydrogen: the solar generation of hydrogen by water Photoelectrolysis. Springer Science & Business Media
Guan Y, Deng M, Yu X, Zhang W (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73. https://doi.org/10.1016/j.bej.2003.10.006
Guo XM, Trably E, Latrille E et al (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008
Hallenbeck PC (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial Technologies in Advanced Biofuels Production. Springer, US, Boston, MA, pp 15–28
Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9. https://doi.org/10.1016/j.biortech.2012.01.103
Hawkes FR, Hussy I, Kyazze G et al (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184. https://doi.org/10.1016/j.ijhydene.2006.08.014
Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7:334–352. https://doi.org/10.1002/bbb.1403
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027
Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. https://doi.org/10.1016/j.biortech.2008.12.046
Ishikawa M, Yamamura S, Takamura Y et al (2006) Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrog Energy 31:1484–1489. https://doi.org/10.1016/j.ijhydene.2006.06.014
Ito T, Nakashimada Y, Senba K et al (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265. https://doi.org/10.1263/jbb.100.260
Kan E (2013) Effects of pretreatments of anaerobic sludge and culture conditions on hydrogen productivity in dark anaerobic fermentation. Renew Energy 49:227–231. https://doi.org/10.1016/j.renene.2012.01.026
Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015
Kargi F, Eren NS, Ozmihci S (2012) Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int J Hydrog Energy 37:2260–2266. https://doi.org/10.1016/j.ijhydene.2011.11.018
Khetkorn W, Rastogi RP, Incharoensakdi A et al (2017) Microalgal hydrogen production – a review. Bioresour Technol 243:1194–1206. https://doi.org/10.1016/j.biortech.2017.07.085
Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431. https://doi.org/10.1016/j.biortech.2011.02.113
Kim S-H, Han S-K, Shin H-S (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29:1607–1616. https://doi.org/10.1016/j.ijhydene.2004.02.018
Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy 33:1168–1174. https://doi.org/10.1016/j.biombioe.2009.05.001
Kumar G, Bakonyi P, Periyasamy S et al (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737. https://doi.org/10.1016/j.rser.2015.01.042
Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial Heterocysts. Cold Spring Harb Perspect Biol 2:a000315. https://doi.org/10.1101/cshperspect.a000315
Lee D-J, Show K-Y, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102:8393–8402. https://doi.org/10.1016/j.biortech.2011.03.041
Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271. https://doi.org/10.1016/j.tibtech.2010.01.007
Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6
Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98:251–256. https://doi.org/10.1016/S1389-1723(04)00277-4
Liu X, Wang X, Yao S et al (2014) Recent advances in the production of polyols from lignocellulosic biomass and biomass-derived compounds. RSC Adv 4:49501–49520. https://doi.org/10.1039/C4RA06466F
Lucia Ghirardi M, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen -producing systems. Chem Soc Rev 38:52–61. https://doi.org/10.1039/B718939G
Łukajtis R, Hołowacz I, Kucharska K et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043
Mackenzie W (2019) The future for green hydrogen. https://www.woodmac.com/news/editorial/the-future-for-green-hydrogen/. Accessed 9 Mar 2021
Madigan MM, Martinko J, Parker J (2002) Brock biology of microorganisms. Upper Saddle River, NJ
McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251. https://doi.org/10.1016/j.copbio.2010.02.012
Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrog Energy 31:1563–1573. https://doi.org/10.1016/j.ijhydene.2006.06.038
Mohammadi P, Ibrahim S, Mohamad Annuar MS, Law S (2011) Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod 19:1654–1658. https://doi.org/10.1016/j.jclepro.2011.05.009
Mora-Pale M, Meli L, Doherty TV et al (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245. https://doi.org/10.1002/bit.23108
Mtui GYS (2009) Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 8. https://doi.org/10.4314/ajb.v8i8.60134
Nakashimada Y, Rachman MA, Kakizono T, Nishio N (2002) Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrog Energy 27:1399–1405. https://doi.org/10.1016/S0360-3199(02)00128-3
Ntaikou I, Kourmentza C, Koutrouli EC et al (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100:3724–3730. https://doi.org/10.1016/j.biortech.2008.12.001
Nyberg M, Heidorn T, Lindblad P (2015) Hydrogen production by the engineered cyanobacterial strain nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J Biotechnol 215:35–43. https://doi.org/10.1016/j.jbiotec.2015.08.028
Plummer S, Plummer M (2012) Photosynthetic hydrogen production from the green alga chlamydomonas reinhardth
Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. Waste Manag 71:734–748. https://doi.org/10.1016/j.wasman.2017.05.024
Reith JH, Wijffels RH, Barten H (2003) Bio-methane and bio-hydrogen : status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation - NOVEM, The Hague, The Netherlands
Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38:13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122
Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnology Reports 15:63–69. https://doi.org/10.1016/j.btre.2017.06.001
Shin H-S, Youn J-H, Kim S-H (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29:1355–1363. https://doi.org/10.1016/j.ijhydene.2003.09.011
Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7
Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621
Ueno Y, Kurano N, Miyachi S (1999) Purification and characterization of hydrogenase from the marine green alga, Chlorococcum littorale. FEBS Lett 443:144–148. https://doi.org/10.1016/s0014-5793(98)01699-8
Wang J, Yin Y (2018) Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sust Energ Rev 92:284–306. https://doi.org/10.1016/j.rser.2018.04.033
Wang J, Yin Y (2019) Progress in microbiology for fermentative hydrogen production from organic wastes. Crit Rev Environ Sci Technol 49:825–865. https://doi.org/10.1080/10643389.2018.1487226
Winkler M, Heil B, Heil B, Happe T (2002a) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334. https://doi.org/10.1016/s0167-4781(02)00239-7
Winkler M, Hemschemeier A, Gotor C et al (2002b) [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrog Energy 27:1431–1439. https://doi.org/10.1016/S0360-3199(02)00095-2
Yadav VS, Vinoth R, Yadav D (2018) Bio-hydrogen production from waste materials: a review. MATEC Web Conf 192:02020. https://doi.org/10.1051/matecconf/201819202020
Zhang M-L, Fan Y-T, Xing Y et al (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254. https://doi.org/10.1016/j.biombioe.2006.08.004
Zhu X, Xie X, Liao Q et al (2011) Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture. Bioresour Technol 102:8696–8699. https://doi.org/10.1016/j.biortech.2011.02.028
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Díaz-Cruz, E.B., Rodriguez-Torres, M.d.P. (2023). Biotechnology in Hydrogen Generation. In: Rodriguez-Torres, M.d.P., Martinez-Alonso, C. (eds) Biotechnology in the generation of biofuels. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-9187-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-19-9187-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-9186-8
Online ISBN: 978-981-19-9187-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)