Skip to main content

Removal of Toxic Emerging Pollutants Using Membrane Technologies

Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

The world has been facing a huge crisis of clean water for the past decade, and advanced applications of modern technologies in various industrial and commercial sectors are only adding to freshwater security problems. The ever-increasing use of synthetic and toxic chemicals in various industries plays the main role in water contamination. Moreover, the ultra-modern lifestyle is leading researchers to develop new and advanced products which are unfortunately not so environment friendly. Several harmful substances are now being recognized to be widely present in water resources which possess a potential risk to the environment and public health. Many researchers are labeling these as “emerging contaminants” or “emerging pollutants”, however, adequate data is not yet available to assess the complete risk. Such emerging pollutants may not necessarily be new chemicals, they may include substances that have been present in the environment for a long time but their extensive use and consequent detrimental effects on the environment are being discovered now. Hence, there is an urgent need to explore highly advanced methods and materials to remove such new contaminants. Membrane technology has come out as the choicest alternative to separate a range of new emerging pollutants from water bodies. This chapter focuses on the role of polymeric membranes in the advanced water treatment process. It also highlights the major trends in membrane technology with respect to novel materials, novel configuration, and major challenges such as membrane fouling, cleaning, and their potential application in reuse for potable water (PW).

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T (2011) Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265(1–3):222–228

    Article  CAS  Google Scholar 

  2. Abd Hamid S, Shahadat M, Ballinger B, Azha SF, Ismail S, Ali SW, Ahammad SZ (2020) Role of clay-based membrane for removal of copper from aqueous solution. J Saudi Chem Soc 24(10):785–798

    Article  CAS  Google Scholar 

  3. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Membr Sci 552:326–335

    Article  CAS  Google Scholar 

  4. Akther N, Lin Y, Wang S, Phuntsho S, Fu Q, Ghaffour N, Shon HK (2021) In situ ultrathin silica layer formation on polyamide thin-film composite membrane surface for enhanced forward osmosis performances. J Membr Sci 620:118876

    Article  CAS  Google Scholar 

  5. Alonso JJS, El Kori N, Melián-Martel N, Del Río-Gamero B (2018) Removal of ciprofloxacin from seawater by reverse osmosis. J Environ Manag 217:337–345

    Article  CAS  Google Scholar 

  6. Alpatova A, Meshref M, McPhedran KN, El-Din MG (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Membr Sci 490:227–235

    Article  CAS  Google Scholar 

  7. Alvarenga AD, Correa DS (2021) Composite nanofibers membranes produced by solution blow spinning modified with CO2-activated sugarcane bagasse fly ash for efficient removal of water pollutants. J Clean Prod 285:125376

    Article  CAS  Google Scholar 

  8. Ang WL, Mohammad AW, Hilal N, Leo CP (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18

    Article  CAS  Google Scholar 

  9. Anis SF, Hashaikeh R, Hilal N (2019) Microfiltration membrane processes: a review of research trends over the past decade. J Water Process Eng 32:100941

    Article  Google Scholar 

  10. Babaei F, Ehrampoush MH, Eslami H, Ghaneian MT, Fallahzadeh H, Talebi P, Ebrahimi AA (2019) Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. J Clean Prod 211:922–931

    Article  CAS  Google Scholar 

  11. Baek K, Kim B-K, Cho H-J, Yang J-W (2003) Removal characteristics of anionic metals by micellar-enhanced ultrafiltration. J Hazard Mater 99(3):303–311

    Article  CAS  Google Scholar 

  12. Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Drioli E (2021) A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J Ind Eng Chem 101:78–125

    Article  CAS  Google Scholar 

  13. Bao Y, Yan X, Du W, Xie X, Pan Z, Zhou J, Li L (2015) Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II). Chem Eng J 281:460–467

    Article  CAS  Google Scholar 

  14. Barakat M, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256(1–3):90–93

    Article  CAS  Google Scholar 

  15. Baransi-Karkaby K, Bass M, Freger V (2019) In situ modification of reverse osmosis membrane elements for enhanced removal of multiple micropollutants. Membranes 9(2):28

    Article  Google Scholar 

  16. Bell KY, Wells MJ, Traexler KA, Pellegrin ML, Morse A, Bandy J (2011) Emerging pollutants. Water Environ Res 83(10):1906–1984

    Article  CAS  Google Scholar 

  17. Berbar Y, Hammache ZE, Bensaadi S, Soukeur R, Amara M, Van der Bruggen B (2019) Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J Water Process Eng 32:100953

    Article  Google Scholar 

  18. Bethi B, Sonawane SH, Bhanvase BA, Sonawane SS (2021) Textile industry wastewater treatment by cavitation combined with fenton and ceramic nanofiltration membrane. Chem Eng Process Process Intensif 168:108540

    Article  CAS  Google Scholar 

  19. Bidwell JR, Becker C, Hensley S, Stark R, Meyer MT (2010) Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas. Arch Environ Contam Toxicol 58(2):286–298

    Article  CAS  Google Scholar 

  20. Birch G, Drage D, Thompson K, Eaglesham G, Mueller J (2015) Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Mar Pollut Bull 97(1–2):56–66

    Article  CAS  Google Scholar 

  21. Bolong N, Ismail A, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246

    Article  CAS  Google Scholar 

  22. Bortoluzzi AC, Faitão JA, Di Luccio M, Dallago RM, Steffens J, Zabot GL, Tres MV (2017) Dairy wastewater treatment using integrated membrane systems. J Environ Chem Eng 5(5):4819–4827

    Article  CAS  Google Scholar 

  23. Braune A, Engst W, Blaut M (2005) Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. J Agric Food Chem 53(5):1782–1790

    Article  CAS  Google Scholar 

  24. Bruton T, Alboloushi A, De La Garza B, Kim B-O, Halden RU (2010) Fate of caffeine in the environment and ecotoxicological considerations. In: Contaminants of emerging concern in the environment: ecological and human health considerations, pp 257–273

    Google Scholar 

  25. Cadotte J, Forester R, Kim M, Petersen R, Stocker T (1988) Nanofiltration membranes broaden the use of membrane separation technology. Desalination 70(1–3):77–88

    Article  CAS  Google Scholar 

  26. Calvo-Flores FG, Isac-García J, Dobado JA (2018) Emerging pollutants: origin, structure, and properties. Wiley

    Google Scholar 

  27. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1212

    Article  CAS  Google Scholar 

  28. Cath T (2010) Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes. Desalin Water Treat 15:279–286. In: Cath T, Childress A, Elimelech M (eds) Forward osmosis: principles, applications, and recent developments

    Google Scholar 

  29. Chander V, Sharma B, Negi V, Aswal R, Singh P, Singh R, Dobhal R (2016) Pharmaceutical compounds in drinking water. J Xenobiot 6(1):1–7

    Article  CAS  Google Scholar 

  30. Chen W, Chen S, Liang T, Zhang Q, Fan Z, Yin H, Sheng P (2018) High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat Nanotechnol 13(4):345–350

    Article  CAS  Google Scholar 

  31. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    Article  CAS  Google Scholar 

  32. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214(6):442–448

    Article  CAS  Google Scholar 

  33. Dong L-X, Yang H-W, Liu S-T, Wang X-M, Xie YF (2015) Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes. Desalination 365:70–78

    Article  CAS  Google Scholar 

  34. Dong X, Meng Q-W, Hu W, Chen R, Ge Q (2022) Forward osmosis membrane developed from the chelation of Fe3+ and carboxylate for trace organic contaminants removal. Chem Eng J 428:131091

    Article  CAS  Google Scholar 

  35. Ebrahimi M, Willershausen D, Ashaghi KS, Engel L, Placido L, Mund P, Czermak P (2010) Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination 250(3):991–996

    Article  CAS  Google Scholar 

  36. EFSA (2009) EFSA panel on contaminants in the food chain. Scientific opinion on arsenic in food. EFSA J 7

    Google Scholar 

  37. Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF (2014) A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem Eng J 237:70–80

    Article  CAS  Google Scholar 

  38. Enyoh CE, Ohiagu FO, Verla AW, Wang Q, Shafea L, Verla EN, Chowdhury MAH (2021) “Plasti-remediation”: advances in the potential use of environmental plastics for pollutant removal. Environ Technol Innov 23:101791

    Article  CAS  Google Scholar 

  39. Ericson JF (2007) An evaluation of the OECD 308 water/sediment systems for investigating the biodegradation of pharmaceuticals. Environ Sci Technol 41(16):5803–5811

    Article  CAS  Google Scholar 

  40. Eumine Suk D, Matsuura T (2006) Membrane-based hybrid processes: a review. Sep Sci Technol 41(4):595–626

    Article  CAS  Google Scholar 

  41. Fernandes C, Bilad M, Nordin N (2017) Silica incorporated membrane for wastewater based filtration. Paper presented at the AIP conference proceedings

    Google Scholar 

  42. Fu Q, Wen L, Zhang L, Chen X, Pun D, Ahmed A, Zhang H (2017) Preparation of ice-templated MOF–polymer composite monoliths and their application for wastewater treatment with high capacity and easy recycling. ACS Appl Mater Interfaces 9(39):33979–33988

    Article  CAS  Google Scholar 

  43. Gharehbakhsh H, Panahi HA, Toosi MR, Hassani AH, Moniri E (2020) Application of polyamide thin-film composite layered on polysulfone-GO/TiO2 mixed matrix membranes for removal of nitrotoluene derivatives from petrochemical wastewaters. Environ Sci Pollut Res 27(34):42481–42494

    Article  CAS  Google Scholar 

  44. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  Google Scholar 

  45. González-González RB, Sharma A, Parra-Saldívar R, Ramirez-Mendoza RA, Bilal M, Iqbal HM (2022) Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials. J Hazard Mater 423:127145

    Article  Google Scholar 

  46. Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Emerging compounds removal from wastewater. Springer, pp 15–37

    Google Scholar 

  47. Guo W, Vigneswaran S, Ngo H, Chapman H (2004) Experimental investigation of adsorption–flocculation–microfiltration hybrid system in wastewater reuse. J Membr Sci 242(1–2):27–35

    Article  CAS  Google Scholar 

  48. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Func Mater 23(29):3693–3700

    Article  CAS  Google Scholar 

  49. Hatimi B, Mouldar J, Loudiki A, Hafdi H, Joudi M, Daoudi E, Bakasse M (2020) Low cost pyrrhotite ash/clay-based inorganic membrane for industrial wastewaters treatment. J Environ Chem Eng 8(1):103646

    Article  CAS  Google Scholar 

  50. Hazmo N, Naim R, Ismail A, Lau W, Wan Azelee I, Ramli M (2018) Nanocomposite ultrafiltration membranes incorporated with zeolite and carbon nanotubes for enhanced water separation. Int J Eng 31(8):1446–1454

    CAS  Google Scholar 

  51. Hendriksen RS, Kemitorvet B (2012) No. 6–December 2012. Emerg Infect Dis 18:523–525

    Google Scholar 

  52. Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54(3):225–233

    Article  CAS  Google Scholar 

  53. Ismail AF, David L (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193(1):1–18

    Article  CAS  Google Scholar 

  54. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587

    Google Scholar 

  55. Joint FAO/WHO Expert Committee on Food Additives and World Health Organization (2006) Evaluation of certain food contaminants: sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization

    Google Scholar 

  56. Joint FAO/WHO Expert Committee on Food Additives and World Health Organization (2011). Safety evaluation of certain food additives and contaminants: prepared by the Seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). World Health Organization

    Google Scholar 

  57. Jose AJ, Kappen J, Alagar M (2018) Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Fundamental biomaterials: polymers. Elsevier, pp 21–35

    Google Scholar 

  58. Kiezyk P, Mackay D (1971) Waste water treatment by solvent extraction. Can J Chem Eng 49(6):747–752

    Article  CAS  Google Scholar 

  59. Kim J-H, Park P-K, Lee C-H, Kwon H-H (2008) Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: graft polymerization and cross-linking followed by functional group substitution. J Membr Sci 321(2):190–198

    Article  CAS  Google Scholar 

  60. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41(5):1013–1021

    Article  CAS  Google Scholar 

  61. Kujawa-Roeleveld K, Schuman E, Grotenhuis T, Kragic D, Mels A, Zeeman G (2008) Biodegradability of human pharmaceutically active compounds (PhAC) in biological systems treating source separated wastewater streams. Paper presented at the Proceeding of the IWA international conference sanitation challenge

    Google Scholar 

  62. Kyzas GZ, Matis KA (2018) Flotation in water and wastewater treatment. Processes 6(8):116

    Article  Google Scholar 

  63. Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  64. Le-Clech P, Jefferson B, Judd S (2005) A comparison of submerged and sidestream tubular membrane bioreactor configurations. Desalination 173(2):113–122

    Article  CAS  Google Scholar 

  65. Li L, Wei D, Wei G, Du Y (2013) Transformation of cefazolin during chlorination process: products, mechanism and genotoxicity assessment. J Hazard Mater 262:48–54

    Article  CAS  Google Scholar 

  66. Mahmoodi NM, Salehi R, Arami M, Bahrami H (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267(1):64–72

    Article  CAS  Google Scholar 

  67. Mansouri N, Etebari M, Ebrahimi A, Ebrahimpour K, Rahimi B, Hassanzadeh A (2020) Genotoxicity and phytotoxicity comparison of cigarette butt with cigarette ash. Environ Sci Pollut Res 27(32):40383–40391

    Article  CAS  Google Scholar 

  68. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Article  CAS  Google Scholar 

  69. Masoudnia K, Raisi A, Aroujalian A, Fathizadeh M (2015) A hybrid microfiltration/ultrafiltration membrane process for treatment of oily wastewater. Desalin Water Treat 55(4):901–912

    Article  CAS  Google Scholar 

  70. Menini R, Henuset YM, Fournier J (2005) Electrochemical oxidation of phenolic compounds using a flow-through electrolyser with porous solid electrodes. J Appl Electrochem 35(6):625–631

    Article  CAS  Google Scholar 

  71. Micevska T, Warne MSJ, Pablo F, Patra R (2006) Variation in, and causes of, toxicity of cigarette butts to a cladoceran and microtox. Arch Environ Contam Toxicol 50(2):205–212

    Article  CAS  Google Scholar 

  72. Mnif A, Tabassi D, Ben Sik Ali M, Hamrouni B (2015) Phenol removal from water by AG reverse osmosis membrane. Environ Prog Sustain Energy 34(4):982–989

    Article  CAS  Google Scholar 

  73. Mouiya M, Abourriche A, Bouazizi A, Benhammou A, El Hafiane Y, Abouliatim Y, Smith A (2018) Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment. Desalination 427:42–50

    Article  CAS  Google Scholar 

  74. Moustafa M, Abu-Saied M, Taha T, Elnouby M, El-Shafeey M, Alshehri AG, Alghamdii H (2021) Chitosan functionalized AgNPs for efficient removal of imidacloprid pesticide through a pressure-free design. Int J Biol Macromol 168:116–123

    Article  CAS  Google Scholar 

  75. Novotny TE, Zhao F (1999) Consumption and production waste: another externality of tobacco use. Tob Control 8(1):75–80

    Article  CAS  Google Scholar 

  76. Novotny TE, Lum K, Smith E, Wang V, Barnes R (2009) Filtered cigarettes and the case for an environmental policy on cigarette waste. Int J Environ Res Public Health 6:1691–1705

    Article  Google Scholar 

  77. Obotey Ezugbe E, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89

    Article  Google Scholar 

  78. Ojalvo C, Moreno R, Guiberteau F, Ortiz AL (2020) Pressureless ultrafast sintering of near-net-shaped superhard isotropic B4C/rGO composites with Ti-Al additives. J Eur Ceram Soc 40(12):4354–4360

    Article  CAS  Google Scholar 

  79. Padaki M, Isloor AM, Fernandes J, Prabhu KN (2011) New polypropylene supported chitosan NF-membrane for desalination application. Desalination 280(1–3):419–423

    Article  CAS  Google Scholar 

  80. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, Marella RK (2021) Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review. Molecules 26(9):2799

    Article  CAS  Google Scholar 

  81. Pan S, Li J, Noonan O, Fang X, Wan G, Yu C, Wang L (2017) Dual-functional ultrafiltration membrane for simultaneous removal of multiple pollutants with high performance. Environ Sci Technol 51(9):5098–5107

    Article  CAS  Google Scholar 

  82. Panel EC (2009) Cadmium in food-scientific opinion of the panel on contaminants in the food chain. EFSA J 980:1–139

    Google Scholar 

  83. Pastrana-Martinez LM, Morales-Torres S, Figueiredo JL, Faria JL, Silva AM (2015) Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res 77:179–190

    Article  CAS  Google Scholar 

  84. Peters T (2010) Membrane technology for water treatment. Chem Eng Technol 33(8):1233–1240

    Article  CAS  Google Scholar 

  85. Pollack K, Balazs K, Ogunseitan O (2009) Proteomic assessment of caffeine effects on coral symbionts. Environ Sci Technol 43(6):2085–2091

    Article  CAS  Google Scholar 

  86. Porwal T (2015) Paint pollution harmful effects on environment. Int J Res GRANTHAALAYAH 3(9SE):1–4

    Google Scholar 

  87. Pugazhenthi G, Sachan S, Kishore N, Kumar A (2005) Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. J Membr Sci 254(1–2):229–239

    Article  CAS  Google Scholar 

  88. Ragab D, Gomaa H, Sabouni R, Salem M, Ren M, Zhu J (2016) Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs). Chem Eng J 300:273–279

    Article  CAS  Google Scholar 

  89. Rengaraj S, Yeon K-H, Moon S-H (2001) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater 87(1–3):273–287

    Article  CAS  Google Scholar 

  90. Renwick A (1986) The metabolism of intense sweeteners. Xenobiotica 16(10–11):1057–1071

    Article  CAS  Google Scholar 

  91. Ritter JA, Bibler J (1992) Removal of mercury from waste water: large-scale performance of an ion exchange process. Water Sci Technol 25(3):165–172

    Article  CAS  Google Scholar 

  92. Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049

    Article  CAS  Google Scholar 

  93. Rodriguez-Mozaz S, Ricart M, Köck-Schulmeyer M, Guasch H, Bonnineau C, Proia L, Barceló D (2015) Pharmaceuticals and pesticides in reclaimed water: efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. J Hazard Mater 282:165–173

    Article  CAS  Google Scholar 

  94. Rosman N, Salleh W, Mohamed MA, Jaafar J, Ismail A, Harun Z (2018) Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J Colloid Interface Sci 532:236–260

    Article  CAS  Google Scholar 

  95. Rouquie C, Dahdouh L, Ricci J, Wisniewski C, Delalonde M (2019) Immersed membranes configuration for the microfiltration of fruit-based suspensions. Sep Purif Technol 216:25–33

    Article  CAS  Google Scholar 

  96. Saththasivam J, Yiming W, Wang K, Jin J, Liu Z (2018) A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci Rep 8(1):1–6

    Article  CAS  Google Scholar 

  97. Shakak M, Rezaee R, Maleki A, Jafari A, Safari M, Shahmoradi B, Lee S-M (2020) Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ Technol Innov 17:100529

    Article  Google Scholar 

  98. Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  99. Sun T, Liu Y, Shen L, Xu Y, Li R, Huang L, Lin H (2020) Magnetic field assisted arrangement of photocatalytic TiO2 particles on membrane surface to enhance membrane antifouling performance for water treatment. J Colloid Interface Sci 570:273–285

    Article  CAS  Google Scholar 

  100. Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA, Al-Mohaimeed AM (2021) Pesticides in drinking water—a review. Int J Environ Res Public Health 18(2):468

    Article  CAS  Google Scholar 

  101. Tagliavini M, Schäfer AI (2018) Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration. J Hazard Mater 353:514–521

    Article  CAS  Google Scholar 

  102. Thomas KV, Bijlsma L, Castiglioni S, Covaci A, Emke E, Grabic R, Lindberg RH (2012) Comparing illicit drug use in 19 European cities through sewage analysis. Sci Total Environ 432:432–439

    Article  CAS  Google Scholar 

  103. Thompson R, Olsen Y, Mitchell R, Davis A, Rowland S, John AWG, Mcgonigle D, Russell AE (2004) Lost at sea: where is all the plastic

    Google Scholar 

  104. Torres FG, De-la-Torre GE (2021) Environmental pollution with antifouling paint particles: distribution, ecotoxicology, and sustainable alternatives. Mar Pollut Bull 169:112529

    Article  CAS  Google Scholar 

  105. Turner A (2010) Marine pollution from antifouling paint particles. Mar Pollut Bull 60(2):159–171

    Article  CAS  Google Scholar 

  106. Umejuru EC, Prabakaran E, Pillay K (2021) Coal fly ash decorated with graphene oxide-tungsten oxide nanocomposite for rapid removal of Pb2+ ions and reuse of spent adsorbent for photocatalytic degradation of acetaminophen. ACS Omega 6(17):11155–11172

    Article  CAS  Google Scholar 

  107. UNICEF and UNICEF (2016) Strategy for water, sanitation and hygiene 2016–2030

    Google Scholar 

  108. Wang Y, Xu T (2015) Anchoring hydrophilic polymer in substrate: an easy approach for improving the performance of TFC FO membrane. J Membr Sci 476:330–339

    Article  CAS  Google Scholar 

  109. Wang Y, Zhu J, Huang H, Cho H-H (2015) Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J Membr Sci 479:165–174

    Article  CAS  Google Scholar 

  110. Warsinger DM, Chakraborty S, Tow EW, Plumlee MH, Bellona C, Loutatidou S, Ghassemi A (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81:209–237

    Article  CAS  Google Scholar 

  111. Wenten IG (2016) Reverse osmosis applications: prospect and challenges. Desalination 391:112–125

    Article  CAS  Google Scholar 

  112. Yang F, Sadam H, Zhang Y, Xia J, Yang X, Long J, Shao L (2020) A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 225:115845

    Article  CAS  Google Scholar 

  113. Yang Y, Nie C, Deng Y, Cheng C, He C, Ma L, Zhao C (2016) Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes. RSC Adv 6(91):88265–88276

    Article  CAS  Google Scholar 

  114. Yaseen M, Farooq MU, Ahmad W, Subhan F (2021) Fabrication of rGO-CuO and/or Ag2O nanoparticles incorporated polyvinyl acetate based mixed matrix membranes for the removal of Cr6+ from anti-corrosive paint industrial wastewater. J Environ Chem Eng 9(2):105151

    Article  CAS  Google Scholar 

  115. Yoon J, Yoon Y, Amy G, Cho J, Foss D, Kim T-H (2003) Use of surfactant modified ultrafiltration for perchlorate (ClO4) removal. Water Res 37(9):2001–2012

    Article  CAS  Google Scholar 

  116. Zhang J, Nguyen MN, Li Y, Yang C, Schäfer AI (2020) Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes. J Hazard Mater 391:122020

    Article  CAS  Google Scholar 

  117. Zhang X, Liu Y, Sun C, Ji H, Zhao W, Sun S, Zhao C (2015) Graphene oxide-based polymeric membranes for broad water pollutant removal. RSC Adv 5(122):100651–100662

    Article  CAS  Google Scholar 

  118. Zhang Y, Zhao S, Zheng J, He L (2017) TrAC Trends Anal Chem (Ref Ed) 90:1–13

    Article  Google Scholar 

  119. Zhao R, Tian Y, Li S, Ma T, Lei H, Zhu G (2019) An electrospun fiber based metal–organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. J Mater Chem A 7(39):22559–22570

    Article  CAS  Google Scholar 

  120. Zhong J, Sun X, Wang C (2003) Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep Purif Technol 32(1–3):93–98

    Article  CAS  Google Scholar 

  121. Zhou Q, Yang N, Li Y, Ren B, Ding X, Bian H, Yao X (2020) Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecol Conserv 22:e00925

    Article  Google Scholar 

  122. Zhou Z, Lee JY, Chung T-S (2014) Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction. Chem Eng J 249:236–245

    Article  CAS  Google Scholar 

  123. Zou D, Qiu M, Chen X, Drioli E, Fan Y (2019) One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Sep Purif Technol 210:511–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Tersur Orasugh or Dipankar Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaman, A. et al. (2023). Removal of Toxic Emerging Pollutants Using Membrane Technologies. In: Nadda, A.K., Banerjee, P., Sharma, S., Nguyen-Tri, P. (eds) Membranes for Water Treatment and Remediation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9176-9_7

Download citation

Publish with us

Policies and ethics