Skip to main content

Antibacterial and Antifouling Properties of Membranes

  • Chapter
  • First Online:
Membranes for Water Treatment and Remediation

Abstract

Population explosion, industrial activities and climate change have induced the global crisis of water scarcity. To overcome this problem, need for better water and wastewater management is endorsed. Membrane-based treatment technologies are finding their way for these applications. Advantages of using membranes over conventional treatment technologies includes its high selective nature, its separation capacity at molecular level, its simple operation techniques, its ability to recover valuable components separated, its low energy demand, technology being environment friendly, and its easy scalability. Although membrane-based treatment has many advantages, the major drawback is its fouling behaviour that greatly reduces membrane efficiency. Deposition of particles like colloids, proteins, bacterial cells, oils etc. retained either at the membrane surface or inside the pore causes fouling. These greatly reduce membrane flux which might be temporary or permanent. Temporary fouling can be restored by back washing but when membranes become permanently fouled, the efficiency of the membrane cannot be restored. Many technologies are applied like surface coatings with antibacterial or antifouling materials, use of ceramics instead of polymers, zwitterionic coatings etc. to increase antifouling behaviour of the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amirbandeh M, Taheri-Kafrani A (2016) Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: improved stability and reusability. Int J Biol Macromol 93:1183–1191

    Article  CAS  Google Scholar 

  2. Amjad Z (1992) Reverse osmosis, membrane technology, water chemistry and industrial application. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  3. Ang WL, Mohammad AW, Hilal N, Leo CP (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18

    Article  CAS  Google Scholar 

  4. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009

    Article  CAS  Google Scholar 

  5. Aziz M, Karboune S (2018) Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit Rev Food Sci Nutr 58(3):486–511

    CAS  Google Scholar 

  6. Balu KS, Rangaraj KSRS, Subramani K, Srinivasan K, AIcher WK, Ventakachalam R (2020) Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 110:1–13

    Google Scholar 

  7. Blel W, Limousy L, Dutournié P, Ponche A, Boucher A, Fellic ML (2017) Study of the antimicrobial and antifouling properties of different oxide surfaces. Environ Sci Pollut Res 24:9847–9858

    Article  CAS  Google Scholar 

  8. Bolto B, Xie Z (2018) Developments in fouling minimization of membranes modified with silver nanoparticles. J Membr Sci Res 4:111–120

    CAS  Google Scholar 

  9. Dadari S, Rahimi M, Zinadini S (2022) Novel antibacterial and antifouling PES nanofiltration membrane incorporated with green synthesized nickel-bentonite nanoparticles for heavy metal ions removal. Chem Eng J 431:1–22

    Article  Google Scholar 

  10. Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P (2018) Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: a robust nanobiocatalyst. Int J Biol Macromol 113:354–360

    Article  CAS  Google Scholar 

  11. Desmond P, Best JP, Morgenroth E, Derlon N (2018) Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res 132:211–221

    Article  CAS  Google Scholar 

  12. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Zhang KLJ (2020) Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surf Interfaces 20:100553

    Article  CAS  Google Scholar 

  13. Fan X, Liu Y, Wang X, Quan X, Chen S (2019) Improvement of antifouling and antimicrobial abilities on silver−carbon nanotube based membranes under electrochemical assistance. Environ Sci Technol 53:5292–5300

    Article  CAS  Google Scholar 

  14. Firouzjaei MD, Seyedpour SF, Aktij SA, Giagnorio M, Bazrafshan N, Mollahosseini A, Rahimpour A (2020) Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Mem Sci 596:117604

    Article  CAS  Google Scholar 

  15. Flemming HC, Neu TR, Wingender J (eds) (2016) The perfect slime: microbial extracellular polymeric substances (EPS). IWA publishing, p 193

    Google Scholar 

  16. Ghaemi N, Daraei P, Palani S (2017) Surface modification of polysulfone membranes using poly(acrylic acid)-decorated alumina nanoparticles. Chem Eng Technol 41:261–269

    Google Scholar 

  17. Hossain F, Perales-Perez OJ, Hwang S, Roman F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Tot Environ 466:1047–1059

    Article  Google Scholar 

  18. Jia M, Zhang Z, Yu L, Wang J, Zheng T (2018) The feasibility and application of PPy in cathodic polarization antifouling. Colloids Surf B Biointerface 164:247–254

    Article  CAS  Google Scholar 

  19. Kochkodan V, Hilal N (2015) A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356:187–207

    Article  CAS  Google Scholar 

  20. Kong S, Lim SY, Shin H, Baik JH, Lee JC (2020) High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J Ind Eng Chem 84:131–140

    Google Scholar 

  21. Krishnan B, Mahalingam S (2017) Ag/TiO2/bentonite nanocomposite for biological applications: synthesis, characterization, antibacterial and cytotoxic investigations. Adv Powder Technol 28:2265–2280

    Article  CAS  Google Scholar 

  22. Lee J, Jeong S, Ye Y, Chen V, Vigneswaran S, TorOve L, Zongwenet L (2017) Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: fouling mechanism as a function of pH and ionic strength. Sep Purif Technol 176:323–334

    Article  CAS  Google Scholar 

  23. Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CMN, Guo MY, Ng YH, Djurišić AB, Lee PKH, Chan WK, Yu LH, Phillips DL, Ma APY, Leung FCC (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183

    Article  CAS  Google Scholar 

  24. Linares RV, Wexler AD, Bucs SS, Dreszer C, Zwijnenburg A, Flemming HC, Vrouwenvelder JS (2016) Compaction and relaxation of biofilms. Desalin Water Treat 57(28):12902–12914

    Article  Google Scholar 

  25. Liu Q, Zhang M, Fang Z, Ronget X (2014) Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum packaged. J Sci Food Agric 94:2547–2554

    Article  CAS  Google Scholar 

  26. Liu Y, Su Y, Li Y, Zhao X, Jiang Z (2015) Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation. RSC Adv 5:21349–21359

    Article  CAS  Google Scholar 

  27. Maddah H, Chogle A (2017) Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Appl Water Sci 7(6):2637–2651

    Article  Google Scholar 

  28. Mehrabi Z, Taheri-Kafrani A, Asadnia M, Razmjou A (2020) Bienzymatic modification of polymeric membranes to mitigate biofouling. Sep Purif Technol 237:116464

    Article  CAS  Google Scholar 

  29. Mi YF, Zhao FY, Guo YS, Weng XD, Ye CC, An QF (2017) Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. J Mem Sci 541:29–38

    Article  CAS  Google Scholar 

  30. Miura Y, Watanabe Y, Okabe S (2007) Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation. Environ Sci Technol 41:632–638

    Article  CAS  Google Scholar 

  31. Mokkapati VRSS, Koseoglu-Imer DY, Yilmaz-Deveci N, Mijakovica I, Koyuncu I (2017) Membrane properties and anti-bacterial/antibiofouling activity of polysulfone–graphene oxide composite membranes phase inversed in graphene oxide non-solvent. RSC Adv 7:4378–4386

    Google Scholar 

  32. Moradi G, Zinadini S, Rajabi L, Dadari S (2018) Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl Surf Sci 427:830–842

    Article  CAS  Google Scholar 

  33. Mulder M (1997) Basic principles of membrane technology, 2nd edn

    Google Scholar 

  34. Murphy AP, Moody CD, Riley RL, Lin SW, Murugaverl B, Rusin P (2001) Microbiological damage of cellulose acetate RO membranes. J Membr Sci 193:111–121

    Article  CAS  Google Scholar 

  35. Nagandran S, Goh PS, Ismail AF, Wong TW, Binti Wan Dagang WRZ (2020) The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry 12(2):239

    Article  CAS  Google Scholar 

  36. Nahar S, Mizan MFR, Ha AJW, Ha SD (2018) Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf 17(6):1484–1502

    Article  Google Scholar 

  37. Nguyen T, Roddick FA, Linhua F (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840

    Article  CAS  Google Scholar 

  38. Nocker A, Lindfeld E, Wingender J, Schulte S, Dumm M, Bendinger B (2021) Thermal and chemical disinfection of water and biofilms: only a temporary effect in regard to the autochthonous bacteria. J Water Health 19:808–822

    Article  Google Scholar 

  39. Obaid M, Ghaffour N, Wang S, Yoon MH, Kim IS (2020) Zirconia nanofibres incorporated polysulfone nanocomposite membrane: towards overcoming the permeance-selectivity trade-off. Sep Purif Technol 236:1–13

    Google Scholar 

  40. Pejman M, Firouzjaei MD, Aktij SA, Das P, Zolghadr E, Jafarian H, Shamsabadi AA, Elliott M, Esfahani MR, Sangermano M, Sadrzadeh M, Wujcik EK, Rahimpour A, Tiraferri A (2020) Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks. J Membr Sci 611:1–12

    Article  Google Scholar 

  41. Qu R, Zhang W, Liu N, Zhang Q, Liu Y, Li X, Feng L (2018) Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light. ACS Sustain Chem Eng 6(6):8019–8028

    Article  CAS  Google Scholar 

  42. Rai M, Yadav A, Cioffi N (2012) Silver nanoparticles as nano-antimicrobials: bioactivity, benefits and bottlenecks. In: Nano-antimicrobials. Springer, pp 211–224

    Google Scholar 

  43. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Google Scholar 

  44. Rasmussen JW, Martinez E, Louka P, Wingettet DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery. Expert Opin Drug Deliv 7:1063–1077

    Article  CAS  Google Scholar 

  45. Reith C, Birkenhead B (1998) Membranes enabling the affordable and cost effective reuse of wastewater as an alternative water source. Desalination 117:203–210

    Article  CAS  Google Scholar 

  46. Ren L, Chen J, Lu Q, Han J, Wu H (2021) Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J Membr Sci 617:1–11

    Article  Google Scholar 

  47. Samantaray PK, Madras G, Bose S (2019) The key role of modifications in biointerfaces toward rendering antibacterial and antifouling properties in polymeric membranes for water remediation: a critical assessment. Adv Sustain Sys 3(10):1900017

    Article  CAS  Google Scholar 

  48. Samree K, Srithai P, Kotchaplai P, Thuptimdang P, Painmanakul P, Hunsom M, Sairiam S (2020) Enhancing the antibacterial properties of PVDF membrane by hydrophilic surface modification using titanium dioxide and silver nanoparticles. Membranes 10:1–19

    Article  Google Scholar 

  49. Saraf R (2013) Cost effective and monodispersed zinc oxide nanoparticles synthesis and their characterization. Int J Adv Appl Sci 2:85–88

    Google Scholar 

  50. Shahkaramipour N, Tran TN, Ramanan S, Lin H (2017) Membranes with surface-enhanced antifouling properties for water purification. Membranes 7:1–18

    Article  Google Scholar 

  51. Shameli K, Ahmad MB, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomedicine 5:875–887

    Article  CAS  Google Scholar 

  52. Shi H, Xue L, Gao A, Fu Y, Zhou Q, Zhu L (2016) Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J Mem Sci 498:39–47

    Article  CAS  Google Scholar 

  53. Soozanipour A, Taheri-Kafrani A, Barkhori M, Nasrollahzadeh M (2019) Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. J Colloid Interf Sci 536:261–270

    Article  CAS  Google Scholar 

  54. Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities. J Memb Sci 325:58–68

    Article  CAS  Google Scholar 

  55. Vatanpour V, Madaeni SS, Khataee AZ, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29

    Article  CAS  Google Scholar 

  56. Vidic J, Stankic S, Haque F, Ciric D, Goffic RL, Vidy A, Jupille J, Delmas B (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanoparticle Res 15:1–10

    Article  Google Scholar 

  57. Wang Q, Hu M, Wang Z, Hu W, Cao J, Wu ZC (2018) Uniqueness of biofouling in forward osmosis systems: mechanisms and control. Critical Rev Env Sci Technol 48(19–21):1031–1066

    Article  Google Scholar 

  58. Wu H, Liu Y, Huang J, Mao L, Chen J, Li M (2018) Preparation and characterization of antifouling and antibacterial polysulfone ultrafiltration membranes incorporated with a silver-polydopamine nanohybrid. J Appl Polym Sci 135:46430

    Article  Google Scholar 

  59. Xie Y, Tang C, Wang Z, Xu Y, Zhao W, Sun S, Zhao C (2017) Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J Mater Chem B 5:7186–7193

    Article  CAS  Google Scholar 

  60. Zirehpour A, Rahimpour A, Shamsabadi AA, Sharifian GhM, Soroush M (2017) Mitigation of thin-film composite membrane biofouling via immobilizing nano-sized biocidal reservoirs in the membrane active layer. Environ Sci Technol 51:5511–5522

    Article  CAS  Google Scholar 

  61. Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924

    Article  CAS  Google Scholar 

  62. Zhang X, Ma J, Tang CY, Wang Z, Ng HY, Wu Z (2016) Antibiofouling polyvinylidene fluoride membrane modified by quaternary ammonium compound: direct contact-killing versus induced indirect contact-killing. Environ Sci Technol 50(10):5086–5093

    Article  CAS  Google Scholar 

  63. Zhang C, Li HN, Du Y, Ma MQ, Xu ZK (2017) CuSO4/H2O2-triggered polydopamine/poly (sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir 33(5):1210–1216

    Article  CAS  Google Scholar 

  64. Zhang L, Tang Y, Jiang X, Yu L, Wang C (2020) Highly dual antifouling and antibacterial ultrafiltration membranes modified with silane coupling agent and capsaicin-mimic moieties. Polymers 12:1–17

    Google Scholar 

  65. Zhong Z, Li D, Zhang B, Xing W (2012) Membrane surface roughness characterization and its influence on ultrafine particle adhesion. Sep Purif Technol 90:140–146

    Article  CAS  Google Scholar 

  66. Zhu J, Zhang Y, Tian M, Liu J (2015) Fabrication of a mixed matrix membrane with in situ synthesized quaternized polyethylenimine nanoparticles for dye purification and reuse. ACS Sustain Chem Eng 3(4):690–701

    Article  CAS  Google Scholar 

  67. Zhu J, Wang J, Hou J, Zhang Y, Liu J, Van der Bruggen B (2017) Graphene-based antimicrobial polymeric membranes: a review. J Mater Chem A 5(15):6776–6793

    Article  CAS  Google Scholar 

  68. Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V (2018) Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Mem Sci 550:173–197

    Article  CAS  Google Scholar 

  69. Zunita M, Makertihartha IGBN, Saputra FA, Syaifi YS, Wenten IG (2018) Metal oxide based antibacterial membrane. In: 7th Nanoscience and nanotechnology symposium. IOP Publishing. IOP Conf Ser: Mater Sci Eng 395:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyankari Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, P., Banerjee, P. (2023). Antibacterial and Antifouling Properties of Membranes. In: Nadda, A.K., Banerjee, P., Sharma, S., Nguyen-Tri, P. (eds) Membranes for Water Treatment and Remediation. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9176-9_10

Download citation

Publish with us

Policies and ethics