Skip to main content

Fundamentals and System of Vibration Assisted Machining

  • Chapter
  • First Online:
Vibration Assisted Machining

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 224 Accesses

Abstract

Generally, vibration assisted machining (VAM) has different types of classification based on different characteristics. It can be classified according to vibration frequency, direction and dimension of the devices. This section will detailly introduce each of the different VAM processes and specific principles. From the perspective of vibration frequency, the VAM can be divided into low-frequency and high-frequency VAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson SR, Magrab EB (1985) Design and testing of a fast tool servo for diamond turning. Precis Eng 7(3):123–128

    Article  Google Scholar 

  2. Mann JB, Guo Y, Saldana C et al (2011) Enhancing material removal processes using modulation-assisted machining. Tribol Int 44(10):1225–1235

    Article  Google Scholar 

  3. Yang Z, Zhu L, Zhang G et al (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594

    Article  Google Scholar 

  4. Shamoto E, Moriwaki T (1993) Fundamental study on elliptical vibration cutting. In: Proceeding of the 8th annual meeting, ASPE, pp 162–165

    Google Scholar 

  5. Shamoto E, Suzuki N, Tsuchiya E et al (2005) Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann Manuf Technol 54(1):321–324

    Article  Google Scholar 

  6. Astashev VK, Babitsky VI (1998) Ultrasonic cutting as a nonlinear (vibro-impact) process. Ultrasonics 36(1–5):89–96

    Article  Google Scholar 

  7. Zhang X, Kumar AS, Rahman M et al (2011) Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. J Mater Process Technol 211(11):1701–1709

    Article  Google Scholar 

  8. Kim GD, Loh BG (2013) Cutting force variation with respect to tilt angle of trajectory in elliptical vibration V-grooving. Int J Precis Eng Manuf 14(10):1861–1864

    Article  Google Scholar 

  9. Negishi N (2003) Elliptical vibration assisted machining with single crystal diamond tools

    Google Scholar 

  10. Xiaofen LIU, Wenhu W, Jiang R et al (2021) Analytical model of cutting force in axial ultrasonic vibration-assisted milling in-situ TiB2/7050Al PRMMCs. Chin J Aeronaut 34(4):160–173

    Article  Google Scholar 

  11. Yeung H, Guo Y, Mann JB et al (2016) Effect of low-frequency modulation on deformation and material flow in cutting of metals. J Tribol 138(1):012201

    Article  Google Scholar 

  12. Sui H, Zhang X, Zhang D et al (2017) Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 247:111–120

    Article  Google Scholar 

  13. Wang Y, Lin B, Wang S et al (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73

    Article  Google Scholar 

  14. Gao Y, Sun R, Chen Y et al (2016) Analysis of chip morphology and surface topography in modulation assisted machining. Int J Mech Sci 111:88–100

    Article  Google Scholar 

  15. Zhang T, Liu Z, Shi Z et al (2013) Size effect on surface roughness in micro turning. Int J Precis Eng Manuf 14(3):345–349

    Article  Google Scholar 

  16. Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tools Manuf 46(14):1778–1785

    Article  Google Scholar 

  17. Nath C, Rahman M, Neo KS (2009) Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 49(14):1089–1095

    Article  Google Scholar 

  18. Bai W, Roy A, Sun R et al (2019) Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning. J Mater Process Technol 268:149–161

    Article  Google Scholar 

  19. Xiao M, Sato K, Karube S et al (2003) The effect of tool nose radius in ultrasonic vibration cutting of hard metal. Int J Mach Tools Manuf 43(13):1375–1382

    Article  Google Scholar 

  20. Xiao M, Karube S, Soutome T et al (2002) Analysis of chatter suppression in vibration cutting. Int J Mach Tools Manuf 42(15):1677–1685

    Article  Google Scholar 

  21. Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Meth Eng 55(5):503–518

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding Y, Zhu LM, Zhang XJ et al (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509

    Article  Google Scholar 

  23. Gao J, Altintas Y (2020) Chatter stability of synchronized elliptical vibration assisted milling. CIRP J Manuf Sci Technol 28:76–86

    Article  Google Scholar 

  24. Liu X, Wu D, Zhang J et al (2019) Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol 267:186–195

    Article  Google Scholar 

  25. Suzuki N, Haritani M, Yang J et al (2007) Elliptical vibration cutting of tungsten alloy molds for optical glass parts. CIRP Ann Manuf Technol 56(1):127–130

    Article  Google Scholar 

  26. Kim GD, Loh BG (2007) An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol 190(1–3):181–188

    Google Scholar 

  27. Zhang C, Song Y (2019) A novel design method for 3D elliptical vibration-assisted cutting mechanism. Mech Mach Theory 134: 308–322

    Google Scholar 

  28. Li Q, Zhu L, Wang F (2007) Design of ultrasonic generator based on DDS and PLL technology. Int Symp High Density Packaging and Microsystem Integration, IEEE, pp 1–4.

    Google Scholar 

  29. Xu Y, Zou P, He Y et al (2017) Comparative experimental research in turning of 304 austenitic stainless steel with and without ultrasonic vibration. Proc Inst Mech Eng C J Mech Eng Sci 231(15):2885–2901

    Article  Google Scholar 

  30. Jiang X, Wang K, Shao R et al (2017) Self-compensation theory and design of contactless energy transfer and vibration system for rotary ultrasonic machining. IEEE Trans Power Electron 33(10):8650–8660

    Article  Google Scholar 

  31. Zhou Q, Lam KH, Zheng H et al (2014) Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog Mater Sci 66:87–111

    Article  Google Scholar 

  32. Al-Budairi H, Lucas M, Harkness P (2013) A design approach for longitudinal–torsional ultrasonic transducers. Sens Actuators A: Phys 198: 99–106

    Google Scholar 

  33. Karafi MR, Hojjat Y, Sassani F (2013) A new hybrid longitudinal–torsional magnetostrictive ultrasonic transducer. Smart Mater Struct 22(6):065013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, W., Gao, Y., Sun, R. (2023). Fundamentals and System of Vibration Assisted Machining. In: Vibration Assisted Machining. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-9131-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9131-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9130-1

  • Online ISBN: 978-981-19-9131-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics