Skip to main content

Biomedical Applications of Vibration Assisted Machining

  • Chapter
  • First Online:
Vibration Assisted Machining

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 183 Accesses

Abstract

Bone cutting is an important procedure in surgical operations, covering bone drilling, grinding, sawing etc. Due to a quasi-brittle character and anisotropy of cortical bone, various scenarios of crack propagation and deep injury of tissues are caused, affecting the orthopaedic operation and postoperative recovery. Thus, investigation of the mechanism of bone cutting is crucial for improvement of the bone-tissue removal in surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobs CH, Pope MH, Berry JT et al (1974) A study of the bone machining process—orthogonal cutting. J Biomech 7(2):131. IN1, 133–132, IN4, 136

    Google Scholar 

  2. Sugita N, Mitsuishi M (2009) Specifications for machining the bovine cortical bone in relation to its microstructure. J Biomech 42(16):2826–2829

    Article  Google Scholar 

  3. Liao Z, Axinte DA (2016) On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf 102:41–55

    Article  Google Scholar 

  4. Feldmann A, Ganser P, Nolte L et al (2017) Orthogonal cutting of cortical bone: temperature elevation and fracture toughness. Int J Mach Tools Manuf 118:1–11

    Article  Google Scholar 

  5. Bai W, Shu L, Sun R et al (2020) Mechanism of material removal in orthogonal cutting of cortical bone. J Mech Behav Biomed Mater 104:103618

    Google Scholar 

  6. Ying Z, Shu L, Sugita N (2020) Experimental and finite element analysis of force and temperature in ultrasonic vibration assisted bone cutting. Ann Biomed Eng 48(4):1281–1290

    Article  Google Scholar 

  7. Cardoni A, MacBeath A, Lucas M (2006) Methods for reducing cutting temperature in ultrasonic cutting of bone. Ultrasonics 44:e37–e42

    Article  Google Scholar 

  8. Alam K, Khan M, Silberschmidt VV (2013) Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc Inst Mech Eng 227(6):636–642

    Article  Google Scholar 

  9. Sugita N, Shu L, Shimada T et al (2017) Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann Manuf Technol 66(1):65–68

    Article  Google Scholar 

  10. Shu L, Sugita N (2020) Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. J Mech Behav Biomed Mater 103:103599

    Article  Google Scholar 

  11. Huang YC, Tsai MC, Lin CH (2020) A piezoelectric vibration-based syringe for reducing insertion force. In: IOP conference series: materials science and engineering, 42(1):012020

    Google Scholar 

  12. Barnett AC, Lee YS, Moore JZ (2018) Needle geometry effect on vibration tissue cutting. Proc Institut Mechan Eng Part B: J Eng Manuf 232(5):827–837

    Article  Google Scholar 

  13. Barnett AC, Lee YS, Moore JZ (2016) Fracture mechanics model of needle cutting tissue. J Manuf Sci Eng 138(1)

    Google Scholar 

  14. Barnett AC, Jones JA, Lee YS et al (2016) Compliant needle vibration cutting of soft tissue. J Manuf Sci Eng 138(11):111011

    Article  Google Scholar 

  15. Cowin SC (2001) In: Bone mechanics handbook. CRC Press

    Google Scholar 

  16. Dong XN, Zhang X, Guo XE (2005) Interfacial strength of cement lines in human cortical bone. Mol Cell Biomech 2(2):63

    Google Scholar 

  17. Bai W, Sun R, Leopold J et al (2017) Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: numerical modelling and experimental analysis. Ultrasonics 78:70–82

    Article  Google Scholar 

  18. Zimmermann EA, Gludovatz B, Schaible E et al (2014) Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials 35(21):5472–5481

    Article  Google Scholar 

  19. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275

    Google Scholar 

  20. Ming-Yuan H, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25(9):1053–1067

    Article  Google Scholar 

  21. Adharapurapu RR, Jiang F, Vecchio KS (2006) Dynamic fracture of bovine bone. Mater Sci Eng, C 26(8):1325–1332

    Article  Google Scholar 

  22. Chan KS, Chan CK, Nicolella DP (2009) Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone. Bone 45(3):427–434

    Article  Google Scholar 

  23. Chan KS, Nicolella DP (2012) Micromechanical modeling of R-curve behaviors in human cortical bone. J Mech Behav Biomed Mater 16:136–152

    Article  Google Scholar 

  24. Bi D, Lin Y (2008) Vibrating needle insertion for trajectory optimization. In: 2008 7th World congress on intelligent control and automation. IEEE, pp 7444−7448

    Google Scholar 

  25. Mathieson A, Wallace R, Cleary R et al (2016) Ultrasonic needles for bone biopsy. IEEE Trans Ultrason Ferroelectr Freq Control 64(2):433–440

    Article  Google Scholar 

  26. Cai Y, Moore J, Lee YS (2017) Novel surgical needle design and manufacturing for vibratory-assisted insertion in medical applications. Comput-Aided Design Appl 14(6):833–843

    Article  Google Scholar 

  27. Cai Y, Moore JZ, Lee YS (2017) Thin-slots machining of compliant needles for vibration-assisted medical insertion. Proc Manuf 10:392–406

    Google Scholar 

  28. Tan L, Qin X, Zhang Q et al (2017) Effect of vibration frequency on biopsy needle insertion force. Med Eng Phys 43:71–76

    Article  Google Scholar 

  29. Jones JA, Lee YS, Moore JZ (2017) Asymmetric flexure hinge for compliant vibrational tissue cutting. In: International manufacturing science and engineering conference. American Society of Mechanical Engineers, 50756, V004T05A004

    Google Scholar 

  30. Begg NDM, Slocum AH (2014) Audible frequency vibration of puncture-access medical devices. Med Eng Phys 36(3):371–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, W., Gao, Y., Sun, R. (2023). Biomedical Applications of Vibration Assisted Machining. In: Vibration Assisted Machining. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-9131-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9131-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9130-1

  • Online ISBN: 978-981-19-9131-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics