Skip to main content

Introduction

  • Chapter
  • First Online:
Vibration Assisted Machining

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 170 Accesses

Abstract

During the first half of the nineteenth century, manufacturing equipment began to move towards mechanization. The first turning machine tool was built by Maudslay (1771–1831), and the first milling machine tool was invented by Whitney (1765–1825)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann

    Google Scholar 

  2. Lauwers B, Klocke F, Klink A et al (2014) Hybrid processes in manufacturing. CIRP Ann Manuf Technol 63(2):561–583

    Google Scholar 

  3. Tesfay HD (2016) Ultrasonic vibration assisted grinding of bio-ceramic materials: modeling, simulation, and experimental investigations on edge chipping. North Carolina Agricultural and Technical State University

    Google Scholar 

  4. Bai W, Bisht A, Roy A et al (2019) Improvements of machinability of aerospace-grade Inconel alloys with ultrasonically assisted hybrid machining. Int J Adv Manuf Technol 101(5):1143–1156

    Google Scholar 

  5. Balamuth L (1954) Mechanical impedance transformers in relation to ultrasonic machining. J Acoust Soc Am 26(5):934–934

    Google Scholar 

  6. Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28(2):149–156

    Google Scholar 

  7. Isaev AI, Anokhin VS (1961) Application of ultrasonic vibrations of the tool during cutting metals. Vestn Mashinostr 5:56–62

    Google Scholar 

  8. Legge P (1964) Ultrasonic drilling of ceramics. Ind Diam Rev 24:20

    Google Scholar 

  9. Skelton RC (1968) Turning with an oscillating tool. Int J Mach Tool Des Res 8(4):239–259

    Google Scholar 

  10. Kremer D, Saleh SM, Ghabrial SR et al (1981) The state of the art of ultrasonic machining. CIRP Ann Manuf Technol 30(1):107–110

    Google Scholar 

  11. Zheng SY (2008) Development of a rotary ultrasonic machine and experimental study of machining on the machine. Huaqiao University, Xiamen

    Google Scholar 

  12. Venkatesh VC (1983) Machining of glass by impact processes. J Mech Work Technol 8(2–3):247–260

    Google Scholar 

  13. Sheppard LM (1987) Machining of advanced ceramics. Adv Mater Process Technol 132(6):40–43

    Google Scholar 

  14. Takeyama H, Iijima N (1988) Machinability of glassfiber reinforced plastics and application of ultrasonic machining. CIRP Ann Manuf Technol 37(1):93–96

    Google Scholar 

  15. Koshimizu S, Iansaki I (1988) Hybrid machining of hard and brittle materials. J Mech Work Technol 17:333–341

    Google Scholar 

  16. Hocheng H, Hsu CC (1995) Preliminary study of ultrasonic drilling of fiber-reinforced plastics. J Mater Process Technol 48(1–4):255–266

    Google Scholar 

  17. Dharmadhikari SW, Sharma CS (1985) Optimization of abrasive life in ultrasonic machining. pp 361–364

    Google Scholar 

  18. Nair EV, Ghosh A (1985) A fundamental approach to the study of the mechanics of ultrasonic machining. Int J Prod Res 23(4): 731–753

    Google Scholar 

  19. Wang ZY, Rajurkar KP (1996) Dynamic analysis of the ultrasonic machining process. pp 376–381

    Google Scholar 

  20. Lee TC, Chan CW (1997) Mechanism of the ultrasonic machining of ceramic composites. J Mater Process Technol 71(2):195–201

    Google Scholar 

  21. Seah KHW, Wong YS, Lee LC (1993) Design of tool holders for ultrasonic machining using FEM. J Mater Process Technol 37(1–4):801–816

    Google Scholar 

  22. Amin SG, Ahmed MHM, Youssef HA (1995) Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. J Mater Process Technol 55(3–4):254–260

    Google Scholar 

  23. Komaraiah M, Manan MA, Reddy PN et al (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(2):59–65

    Google Scholar 

  24. Komaraiah M, Narasimha RP (1991) Rotary ultrasonic machining—a new cutting process and its performance. Int J Prod Res 29(11):2177–2187

    MATH  Google Scholar 

  25. Pei ZJ, Ferreira PM, Kapoor SG et al (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tools Manuf 35(7):1033–1046

    Google Scholar 

  26. Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tools Manuf 38(10–11):1399–1418

    Google Scholar 

  27. Cunningham B, Li P, Lin B et al (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sens Actuators, B Chem 81(2–3):316–328

    Google Scholar 

  28. Zhixin J, Jianhua Z, Xing A (1997) Study on a new kind of combined machining technology of ultrasonic machining and electrical discharge machining. Int J Mach Tools Manuf 37(2):193–199

    Google Scholar 

  29. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43(1):35–38

    Google Scholar 

  30. Shamoto E, Moriwaki T (1999) Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann Manuf Technol 48(1):441–444

    Google Scholar 

  31. Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135

    Google Scholar 

  32. Kumar J (2013) Ultrasonic machining—a comprehensive review. Mach Sci Technol 17(3):325–379

    Google Scholar 

  33. Xu WX, Zhang LC (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173–192

    MathSciNet  Google Scholar 

  34. Singh RP, Singhal S (2016) Rotary ultrasonic machining: a review. Mater Manuf Process 31(14):1795–1824

    Google Scholar 

  35. O’Toole L, Kang C, Fang F (2020) Advances in rotary ultrasonic-assisted machining. Nanomanuf Metrol 3(1):1–25

    Google Scholar 

  36. Wang J, Zhang J, Feng P et al (2018) Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: a critical review. Ceram Int 44(2):1227–1239

    Google Scholar 

  37. Xu S, Kuriyagawa T, Shimada K et al (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng 12(1):33–45

    Google Scholar 

  38. Yang Z, Zhu L, Zhang G et al (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594

    Google Scholar 

  39. Ghahramani B, Wang ZY (2001) Precision ultrasonic machining process: a case study of stress analysis of ceramic (Al2O3). Int J Mach Tools Manuf 41(8):1189–1208

    Google Scholar 

  40. Ahmed Y, Cong WL, Stanco MR et al (2012) Rotary ultrasonic machining of alumina dental ceramics: a preliminary experimental study on surface and subsurface damages. J Manuf Sci E T ASME 134(6):064501

    Google Scholar 

  41. Lalchhuanvela H, Doloi B, Bhattacharyya B (2012) Enabling and understanding ultrasonic machining of engineering ceramics using parametric analysis. Mater Manuf Process 27(4):443–448

    Google Scholar 

  42. Nath C, Lim GC, Zheng HY (2012) Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52(5):605–613

    Google Scholar 

  43. Liu JW, Baek DK, Ko TJ (2014) Chipping minimization in drilling ceramic materials with rotary ultrasonic machining. Int J Adv Manuf Technol 72(9):1527–1535

    Google Scholar 

  44. Singh RP, Singhal S (2017) Investigation of machining characteristics in rotary ultrasonic machining of alumina ceramic. Mater Manuf Process 32(3):309–326

    Google Scholar 

  45. Singh RP, Singhal S (2018) An experimental study on rotary ultrasonic machining of macor ceramic. Proc Inst Mech Eng Part B: J Eng Manuf 232(7):1221–1234

    Google Scholar 

  46. Li ZC, Jiao Y, Deines TW et al (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tools Manuf 45(12–13):1402–1411

    Google Scholar 

  47. Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina-based ceramic composites. J Eur Ceram Soc 22(8):1235–1241

    Google Scholar 

  48. Guzzo PL, Raslan AA, Shinohara AH et al (2001) Characterization of synthetic quartz crystals grown from cylindrical seeds produced by ultrasonic machining. J Cryst Growth 229(1–4):275–282

    Google Scholar 

  49. Yu Z, Hu X, Rajurkar KP (2006) Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. CIRP Ann Manuf Technol 55(1):201–204

    Google Scholar 

  50. Zhang C, Cong W, Feng P et al (2014) Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: a feasibility study. Proc Inst Mech Eng Part B: J Eng Manuf 228(4):504–514

    Google Scholar 

  51. Lv D, Huang Y, Tang Y et al (2013) Relationship between subsurface damage and surface roughness of glass BK7 in rotary ultrasonic machining and conventional grinding processes. Int J Adv Manuf Technol 67(1):613–622

    Google Scholar 

  52. Singh R, Khamba JS (2007) Investigation for ultrasonic machining of titanium and its alloys. J Mater Process Technol 183(2–3):363–367

    Google Scholar 

  53. Maurotto A, Muhammad R, Roy A et al (2013) Enhanced ultrasonically assisted turning of a β-titanium alloy. Ultrasonics 53(7):1242–1250

    Google Scholar 

  54. Muhammad R, Maurotto A, Demiral M et al (2014) Thermally enhanced ultrasonically assisted machining of Ti alloy. CIRP J Manuf Sci Technol 7(2):159–167

    Google Scholar 

  55. Kumar J, Khamba JS, Mohapatra SK (2008) An investigation into the machining characteristics of titanium using ultrasonic machining. Int J Mach Mach Mater 3(1/2):143

    Google Scholar 

  56. Feng Q, Cong WL, Pei ZJ et al (2012) Rotary ultrasonic machining of carbon fiber-reinforced polymer: feasibility study. Mach Sci Technol 16(3):380–398

    Google Scholar 

  57. Wang H, Ning F, Hu Y et al (2016) Surface grinding of carbon fiber–reinforced plastic composites using rotary ultrasonic machining: effects of tool variables. Adv Mech Eng 8(9):1687814016670284

    Google Scholar 

  58. Wang H, Hu Y, Cong W et al (2019) A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. Int J Mech Sci 155:450–460

    Google Scholar 

  59. Cong WL, Pei ZJ, Treadwell C (2014) Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54(6):1594–1602

    Google Scholar 

  60. Kataria R, Kumar J, Pabla BS (2016) Experimental investigation and optimization of machining characteristics in ultrasonic machining of WC–Co composite using GRA method. Mater Manuf Process 31(5):685–693

    Google Scholar 

  61. Ding K, Fu Y, Su H et al (2014) Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining. J Mater Process Technol 214(12):2900–2907

    Google Scholar 

  62. Feng P, Wang J, Zhang J et al (2017) Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites. Ceram Int 43(1):791–799

    Google Scholar 

  63. Wang D, Onawumi PY, Ismail SO et al (2019) Machinability of natural-fibre-reinforced polymer composites: conventional vs ultrasonically-assisted machining. Compos A Appl Sci Manuf 119:188–195

    Google Scholar 

  64. Bai W, Roy A, Sun R et al (2019) Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning. J Mater Process Technol 268:149–161

    Google Scholar 

  65. Heisel U, Eisseler R, Eber R et al (2011) Ultrasonic-assisted machining of stone. Prod Eng Res Devel 5(6):587–594

    Google Scholar 

  66. Mikhailova NV, Onawumi PY, Roy A et al (2018) Ultrasonically assisted drilling of rocks. AIP Conf Proc 1959(1):070024

    Google Scholar 

  67. Fernando P, Zhang M, Pei Z (2018) Rotary ultrasonic machining of rocks: an experimental investigation. Adv Mech Eng 10(3):1687814018763178

    Google Scholar 

  68. Bagavathy S, Kumar PR, Raj PAC et al (2021) Frequency measurement through electric network analyzer for ultrasonic machining of steel. Mater Today: Proc 45:1775–1778

    Google Scholar 

  69. Ya G, Qin HW, Yang SC et al (2002) Analysis of the rotary ultrasonic machining mechanism. J Mater Process Technol 129(1–3):182–185

    Google Scholar 

  70. Agarwal S (2015) On the mechanism and mechanics of material removal in ultrasonic machining. Int J Mach Tools Manuf 96:1–14

    Google Scholar 

  71. Volkov GA, Bratov VA, Gruzdkov AA et al (2011) Energy-based analysis of ultrasonically assisted turning. Shock Vib 18(1–2):333–341

    Google Scholar 

  72. Tabatabaei SMK, Behbahani S, Mirian SM (2013) Analysis of ultrasonic assisted machining (UAM) on regenerative chatter in turning. J Mater Process Technol 213(3):418–425

    Google Scholar 

  73. Zhang C, Zhang J, Feng P (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69(1):161–170

    Google Scholar 

  74. Ning F, Wang H, Cong W et al (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51

    Google Scholar 

  75. Hu P, Zhang JM, Pei ZJ (2002) Clyde Treadwell, Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129:339–344

    Google Scholar 

  76. Zeng WM, Li ZC, Pei ZJ et al (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int J Mach Tools Manuf 45(12–13):1468–1473

    Google Scholar 

  77. Li ZC, Cai LW, Pei ZJ et al (2006) Edge-chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int J Mach Tools Manuf 46(12–13):1469–1477

    Google Scholar 

  78. Wang Q, Pei ZJ, Gao H et al (2009) Rotary ultrasonic machining of potassium dihydrogen phosphate (KDP) crystal: an experimental investigation. Int J Mechatron Manuf Syst 2(4):414–426

    Google Scholar 

  79. Liu DF, Cong WL, Pei ZJ et al (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52(1):77–84

    Google Scholar 

  80. Ning FD, Cong WL, Pei ZJ et al (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132

    Google Scholar 

  81. Yu ZY, Rajurkar KP, Tandon A (2004) Study of 3D micro-ultrasonic machining. J Manuf Sci Eng-Trans ASME 126(4):727–732

    Google Scholar 

  82. Sreehari D, Sharma AK (2018) On form accuracy and surface roughness in micro-ultrasonic machining of silicon microchannels. Precis Eng 53:300–309

    Google Scholar 

  83. Kumar S, Dvivedi A (2019) On effect of tool rotation on performance of rotary tool micro-ultrasonic machining. Mater Manuf Process 34(5):475–486

    Google Scholar 

  84. Hu X (2007) Mechanism, characteristics and modeling of micro ultrasonic machining. The University of Nebraska-Lincoln

    Google Scholar 

  85. Zarepour H, Yeo SH (2012) Predictive modeling of material removal modes in micro ultrasonic machining. Int J Mach Tools Manuf 62:13–23

    Google Scholar 

  86. Wang J, Shimada K, Mizutani M et al (2018) Effects of abrasive material and particle shape on machining performance in micro ultrasonic machining. Precis Eng 51:373–387

    Google Scholar 

  87. James S, Sonate A (2018) Experimental study on micromachining of CFRP/Ti stacks using micro ultrasonic machining process. Int J Adv Manuf Technol 95(1):1539–1547

    Google Scholar 

  88. Shamoto E, Suzuki N, Moriwaki T et al (2002) Development of ultrasonic elliptical vibration controller for elliptical vibration cutting. CIRP Ann Manuf Technol 51(1):327–330

    Google Scholar 

  89. Li X, Zhang D (2006) Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting. J Mater Process Technol 180(1–3):91–95

    Google Scholar 

  90. Ma C, Shamoto E, Moriwaki T et al (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 44(12–13):1305–1310

    Google Scholar 

  91. Nath C, Rahman M, Neo KS (2011) Modeling of the effect of machining parameters on maximum thickness of cut in ultrasonic elliptical vibration cutting. J Manuf Sci Eng-Trans ASME 133:011007

    Google Scholar 

  92. Liu J, Jiang X, Han X et al (2019) Influence of parameter matching on performance of high-speed rotary ultrasonic elliptical vibration-assisted machining for side milling of titanium alloys. Int J Adv Manuf Technol 101(5):1333–1348

    Google Scholar 

  93. Zhang X, Kumar AS, Rahman M et al (2011) Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. J Mater Process Technol 211(11):1701–1709

    Google Scholar 

  94. Suzuki N, Haritani M, Yang J et al (2007) Elliptical vibration cutting of tungsten alloy molds for optical glass parts. CIRP Ann Manuf Technol 56(1):127–130

    Google Scholar 

  95. Liu J, Zhang D, Qin L et al (2012) Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). Int J Mach Tools Manuf 53(1):141–150

    Google Scholar 

  96. Tan R, Zhao X, Guo S et al (2020) Sustainable production of dry-ultra-precision machining of Ti–6Al–4V alloy using PCD tool under ultrasonic elliptical vibration-assisted cutting. J Clean Prod 248:119254

    Google Scholar 

  97. Kim GD, Loh BG (2007) An ultrasonic elliptical vibration cutting device for micro V-groove machining: kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol 190(1–3):181–188

    Google Scholar 

  98. Bai W, Sun R, Gao Y et al (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83(5):1025–1036

    Google Scholar 

  99. Kurniawan R, Kumaran ST, Ali S et al (2018) Experimental and analytical study of ultrasonic elliptical vibration cutting on AISI 1045 for sustainable machining of round-shaped microgroove pattern. Int J Adv Manuf Technol 98(5):2031–2055

    Google Scholar 

  100. Goel S, Martinez FD, Chavoshi SZ et al (2018) Molecular dynamics simulation of the elliptical vibration-assisted machining of pure iron. J Micromanuf 1(1):6–19

    Google Scholar 

  101. Zhang J, Cui T, Ge C et al (2016) Review of micro/nano machining by utilizing elliptical vibration cutting. Int J Mach Tools Manuf 106:109–126

    Google Scholar 

  102. Suzuki N, Yokoi H, Shamoto E (2011) Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical vibration cutting. Precis Eng 35(1):44–50

    Google Scholar 

  103. Guo P, Ehmann KF (2013) An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int J Mach Tools Manuf 64:85–95

    Google Scholar 

  104. Guo P, Lu Y, Ehmann KF et al (2014) Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Ann Manuf Technol 63(1):553–556

    Google Scholar 

  105. Zhang J, Suzuki N, Wang Y et al (2015) Ultra-precision nano-structure fabrication by amplitude control sculpturing method in elliptical vibration cutting. Precis Eng 39:86–99

    Google Scholar 

  106. Shamoto E, Suzuki N, Tsuchiya E et al (2005) Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann Manuf Technol 54(1):321–324

    Google Scholar 

  107. Mann JB, Saldana C, Moscoso W et al (2009) Effects of controlled modulation on interface tribology and deformation in machining. Tribol Lett 35(3):221–227

    Google Scholar 

  108. Mann JB, Guo Y, Saldana C et al (2011) Enhancing material removal processes using modulation-assisted machining. Tribol Int 44(10):1225–1235

    Google Scholar 

  109. Yeung H, Sundaram NK, Mann JB et al (2013) Energy dissipation in modulation assisted machining. Int J Mach Tools Manuf 74:41–49

    Google Scholar 

  110. Gandhi R, Sebastian D, Basu S et al (2016) Surfaces by vibration/modulation-assisted texturing for tribological applications. Int J Adv Manuf Technol 85(1):909–920

    Google Scholar 

  111. Gao Y, Sun R, Chen Y et al (2016) Analysis of chip morphology and surface topography in modulation assisted machining. Int J Mech Sci 111:88–100

    Google Scholar 

  112. Debnath K, Singh I (2017) Low-frequency modulation-assisted drilling of carbon-epoxy composite laminates. J Manuf Process 25:262–273

    Google Scholar 

  113. Gao Y, Sun R, Chen Y, Leopold J (2016) Mechanical and thermal modeling of modulation-assisted machining. Int J Adv Manuf Technol 86(9):2945–2959

    Google Scholar 

  114. Gao Y, Mann JB, Chandrasekar S, Sun R, Leopold J (2017) Modelling of tool temperature in modulation-assisted machining. Procedia CIRP 58:204–209

    Google Scholar 

  115. Bai W, Sun R, Roy A, Silberschmidt VV (2017) Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V. Int J Mech Sci 133:357–367

    Google Scholar 

  116. Bai W, Roy A, Guo L, Xu J, Silberschmidt VV (2021) Analytical prediction of frictional behaviour and shear angle in vibration-assisted cutting. J Manuf Process 62:37–46

    Google Scholar 

  117. Bai W, Sun R, Leopold J, Silberschmidt VV (2017) Microstructural evolution of Ti6Al4V in ultrasonically assisted cutting: Numerical modelling and experimental analysis. Ultrasonics 78:70–82

    Google Scholar 

  118. Bai W, Sun R, Leopold J (2016) Numerical modelling of microstructure evolution in Ti6Al4V alloy by ultrasonic assisted cutting. Procedia CIRP 46:428–431

    Google Scholar 

  119. Chen Y, Sun R, Gao Y, Leopold J (2017) A nested-ANN prediction model for surface roughness considering the effects of cutting forces and tool vibrations. Measurement 98:25–34

    Google Scholar 

  120. Gao Y, Sun R, Leopold J (2015) Analysis of cutting stability in vibration assisted machining using an analytical predictive force model. Procedia CIRP 31:515–520

    Google Scholar 

  121. Gao Y, Huang X, Lin M, Wang Z, Sun R (2014) Analysis and prediction of surface integrity in machining: a review. Appl Mech Mater 487:165–172

    Google Scholar 

  122. Bai W, Bisht A, Roy A, Suwas S, Sun R, Silberschmidt VV (2018) Effect of hybrid machining on structural integrity of aerospace-grade materials. Procedia CIRP 77:163–166

    Google Scholar 

  123. Gao Y, Sun R, Bai W (2014) A miniature cutting tool for elliptical vibration-assisted turning: design and kinematical analysis. Appl Mech Mater 610:23–27

    Google Scholar 

  124. Bai W, Wang K, Du D, Zhang J, Huang W, Xu J (2022) Design of an ultrasonic elliptical vibration device with two stationary points for ultra-precision cutting. Ultrasonics 120:106662

    Google Scholar 

  125. Bai W, Shu L, Sun R, Xu J, Silberschmidt VV, Sugita N (2020) Mechanism of material removal in orthogonal cutting of cortical bone. J Mech Behav Biomed Mater 104:103618

    Google Scholar 

  126. Bai W, Shu L, Sun R, Xu J, Silberschmidt VV, Sugita N (2020) Improvements of material removal in cortical bone via impact cutting method. J Mech Behav Biomed Mater 108:103791

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, W., Gao, Y., Sun, R. (2023). Introduction. In: Vibration Assisted Machining. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-9131-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9131-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9130-1

  • Online ISBN: 978-981-19-9131-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics