Skip to main content

Natural Fiber and Nanoparticles Reinforced Natural Fiber for Structural Composite Applications

  • Chapter
  • First Online:
Fiber Reinforced Polymeric Materials and Sustainable Structures

Part of the book series: Composites Science and Technology ((CST))

Abstract

The plant based natural fibers (mostly made of cellulose, hemi cellulose, and lignin) provide several advantages over the traditional inorganic fibers including their low density, good thermal insulation and mechanical properties, reduced tool wear, unlimited availability, low price, and biodegradability. Hence the cellulose micro/nano fibers have evident potential to be utilized as environment friendly reinforcement in composites. Natural fibers reinforced with inorganic nanoparticles can further enhance the mechanical properties of the fiber and could be used as an alternative material to replace synthetic fibers. This short paper will discuss methods of the preparation, physio-chemical and mechanical properties of the nanoparticle reinforced natural fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowell RM (2008) Natural fibres: types and properties. In: Properties and performance of natural-fibre composites, Elsevier, pp 3–66. https://doi.org/10.1533/9781845694593.1.3

  2. Bhuvaneshwari S, Hettiarachchi H, Meegoda J (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16(5):832. https://doi.org/10.3390/ijerph16050832

    Article  CAS  Google Scholar 

  3. Fitzgerald A et al (2021) A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery. Sustainability 13(3):1160. https://doi.org/10.3390/su13031160

    Article  CAS  Google Scholar 

  4. Hosseini SB (2017) A review: nanomaterials as a filler in natural fiber reinforced composites. J Nat Fibers 14(3):311–325. https://doi.org/10.1080/15440478.2016.1212765

    Article  CAS  Google Scholar 

  5. Ramu P, Kumar CJ, Palanikumar K (2019) Mechanical characteristics and terminological behavior study on natural fiber nano reinforced polymer composite—a review. Mater Today: Proc 16, 1287–1296 https://doi.org/10.1016/j.matpr.2019.05.226

  6. Hoareau W, Trindade WG, Siegmund B, Castellan A, Frollini E (2004) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym Degrad Stab 86(3):567–576. https://doi.org/10.1016/j.polymdegradstab.2004.07.005

    Article  CAS  Google Scholar 

  7. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manufact vol 83. Elsevier Ltd, pp 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

  8. Reddy N, Yang Y (2009) Properties of natural cellulose fibers from hop stems. Carbohyd Polym 77(4):898–902. https://doi.org/10.1016/j.carbpol.2009.03.013

    Article  CAS  Google Scholar 

  9. Gowda TM, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A Appl Sci Manufact 30(3):277–284. https://doi.org/10.1016/S1359-835X(98)00157-2

  10. Jawaid M, Abdul Khalil HPS (2021) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

  11. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  12. Li M et al (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B Eng vol 200. Elsevier Ltd. https://doi.org/10.1016/j.compositesb.2020.108254

  13. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207. https://doi.org/10.1002/pc.20461

    Article  CAS  Google Scholar 

  14. Li M et al Recent advancements of plant-based natural fiber-reinforced composites and their applications. [Online]. Available http://energy.gov/downloads/doe-public-access-plan

  15. Bekele AE, Lemu HG, Jiru MG (2022) Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polym Testing 106:107453. https://doi.org/10.1016/j.polymertesting.2021.107453

    Article  CAS  Google Scholar 

  16. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  17. Mahjoub R, Yatim JM, Sam AR, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construct Build Mater vol 55, pp 103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036.

  18. Sunny T, Pickering KL (2022) An overview of alkali treatments of hemp fibres and their effects on the performance of polymer matrix composites. Alkaline Chem Appl, IntechOpen, 2022. https://doi.org/10.5772/intechopen.100321

  19. Jankauskienė Z, Butkutė B, Gruzdevienė E, Cesevičienė J, Fernando AL (2015) Chemical composition and physical properties of dew- and water-retted hemp fibers. Ind Crops Prod 75:206–211. https://doi.org/10.1016/j.indcrop.2015.06.044

    Article  CAS  Google Scholar 

  20. Bacci L, di Lonardo S, Albanese L, Mastromei G, Perito B (2011) Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text Res J 81(8):827–837. https://doi.org/10.1177/0040517510391698

    Article  CAS  Google Scholar 

  21. Antonov V, Marek J, Bjelkova M, Smirous P, Fischer H (2007) Easily available enzymes as natural retting agents. Biotechnol J 2(3):342–346. https://doi.org/10.1002/biot.200600110

    Article  CAS  Google Scholar 

  22. Jankauskiene Z, Butkute B, Gruzdeviene E, Cesevičiene J, Fernando AL (2015) Chemical composition and physical properties of dew- and water-retted hemp fibers. Ind Crops Prod 75:206–211. https://doi.org/10.1016/j.indcrop.2015.06.044

    Article  CAS  Google Scholar 

  23. Toriz G, Gatenholm P, Seiler BD, Tindall D (2005) Cellulose fiber-reinforced cellulose esters: Biocomposites for the future

    Google Scholar 

  24. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym vol 207. Elsevier Ltd, pp 108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

  25. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R (2013) Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20(8):575–593. https://doi.org/10.1080/15685543.2013.816652

    Article  CAS  Google Scholar 

  26. Lee CH, Khalina A, Lee S, Liu M (2020) A comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Adv Mater Sci Eng vol 2020. Hindawi Limited. https://doi.org/10.1155/2020/6074063

  27. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  28. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  29. Xu Y, Kawata S, Hosoi K, Kawai T, Kuroda S (2009) Thermomechanical properties of the silanized-kenaf/polystyrene composites. Express Polym Lett 3(10):657–664. https://doi.org/10.3144/expresspolymlett.2009.82

    Article  CAS  Google Scholar 

  30. John M, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71(3):343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  31. Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63(9):1231–1240. https://doi.org/10.1016/S0266-3538(03)00092-7

    Article  CAS  Google Scholar 

  32. Kommula VP, Reddy KO, Shukla M, Marwala T, Reddy EVS, Rajulu AV (2016) Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass. Int J Polym Anal Charact 21(1):18–28. https://doi.org/10.1080/1023666X.2015.1089650

    Article  CAS  Google Scholar 

  33. Saravanakumar SS, Kumaravel A, Nagarajan T, Moorthy IG (2014) Effect of chemical treatments on physicochemical properties of Prosopis juliflora fibers. Int J Polym Anal Charact 19(5):383–390. https://doi.org/10.1080/1023666X.2014.903585

    Article  CAS  Google Scholar 

  34. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  35. Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77(1):45–55. https://doi.org/10.1016/j.compstruct.2005.06.005

    Article  Google Scholar 

  36. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhesion Adhesives 24(1):43–54. https://doi.org/10.1016/S0143-7496(03)00099-X

  37. Thomason J, Jenkins P, Yang L (2016) Glass fibre strength—a review with relation to composite recycling. Fibers 4(4):18. https://doi.org/10.3390/fib4020018

    Article  Google Scholar 

  38. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11(12):1026–1030. https://doi.org/10.1038/nnano.2016.262

    Article  CAS  Google Scholar 

  39. Mochane MJ et al (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13(2):159–198. https://doi.org/10.3144/expresspolymlett.2019.15

    Article  CAS  Google Scholar 

  40. Thomason JL (2010) Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced composites. Polym Compos 31(9):1525–1534. https://doi.org/10.1002/pc.20939

    Article  CAS  Google Scholar 

  41. Lila MK, Singhal A, Banwait SS, Singh I (2018) A recyclability study of bagasse fiber reinforced polypropylene composites. Polym Degrad Stab 152:272–279. https://doi.org/10.1016/j.polymdegradstab.2018.05.001

    Article  CAS  Google Scholar 

  42. AlMaadeed MA, Ouederni M, Khanam PN (2013) Effect of chain structure on the properties of Glass fibre/polyethylene composites. Mater Design 47, 725–7302. https://doi.org/10.1016/j.matdes.2012.11.063.

  43. Ouali AA et al (2017) Natural unidirectional sheet processes for fibre reinforced bioplastics, pp 060005. https://doi.org/10.1063/1.5016725.

  44. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos B Eng 56:717–723. https://doi.org/10.1016/j.compositesb.2013.09.012

    Article  CAS  Google Scholar 

  45. Couture A, Lebrun G, Laperrière L (2016) Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos Struct 154:286–295. https://doi.org/10.1016/j.compstruct.2016.07.069

    Article  Google Scholar 

  46. Huda M, Drzal L, Mohanty A, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66(11–12):1813–1824. https://doi.org/10.1016/j.compscitech.2005.10.015

    Article  CAS  Google Scholar 

  47. Guna V, Ilangovan M, Ananthaprasad MG, Reddy N (2018) Hybrid biocomposites. Polym Compos 39:E30–E54. https://doi.org/10.1002/pc.24641

    Article  CAS  Google Scholar 

  48. Shih Y-F, Chang W-C, Liu W-C, Lee C-C, Kuan C-S, Yu Y-H (2014) Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. J Taiwan Inst Chem Eng 45(4):2039–2046. https://doi.org/10.1016/j.jtice.2014.02.015

    Article  CAS  Google Scholar 

  49. Sato A, Kabusaki D, Okumura H, Nakatani T, Nakatsubo F, Yano H (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos A Appl Sci Manuf 83:72–79. https://doi.org/10.1016/j.compositesa.2015.11.009

    Article  CAS  Google Scholar 

  50. Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210. https://doi.org/10.1007/s10570-012-9843-9

    Article  CAS  Google Scholar 

  51. Kozłowski RM, Mackiewicz-Talarczyk M, Barriga-Bedoya J (2020) New emerging natural fibres and relevant sources of information, vol. 1. 2020. https://doi.org/10.1016/B978-0-12-818398-4.00022-0

  52. Dolez PI, Arfaoui MA, Dubé M, David É (2017) Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Procedia Eng 200:81–88. https://doi.org/10.1016/j.proeng.2017.07.013

    Article  CAS  Google Scholar 

  53. Anugrahwidya R, Armynah B, Tahir D (2021) Bioplastics starch-based with additional fiber and nanoparticle: characteristics and biodegradation performance: a review. J Polymers Environ 29(11). Springer, pp 3459–3476. https://doi.org/10.1007/s10924-021-02152-z

  54. Chowdhury MNK, Beg MDH, Khan MR (2013) Biodegradability of nanoparticle modified fiber reinforced polyester resin nanocomposite. Procedia Eng 68:431–438. https://doi.org/10.1016/j.proeng.2013.12.203

    Article  CAS  Google Scholar 

  55. Xia C, Shi SQ, Cai L, Nasrazadani S (2015) Increasing inorganic nanoparticle impregnation efficiency by external pressure for natural fibers. Ind Crops Prod 69:395–399. https://doi.org/10.1016/j.indcrop.2015.02.054

    Article  CAS  Google Scholar 

  56. Chen JY, Sun L, Negulescu II, Xu B (2017) Fabrication and evaluation of regenerated cellulose/nanoparticle fibers from lignocellulosic biomass. Biomass Bioenerg 101:1–8. https://doi.org/10.1016/j.biombioe.2017.03.024

    Article  CAS  Google Scholar 

  57. Sherief Z, Xian G, Thomas S, Ajith A (2017) Effects of surface grafting of copper nanoparticles on the tensile and bonding properties of flax fibers. Sci Eng Compos Mater 24(5):651–660. https://doi.org/10.1515/secm-2014-0462

    Article  CAS  Google Scholar 

  58. Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH (2017) Review of the applications of biocomposites in the automotive industry. Polym Compos 38(11):2553–2569. https://doi.org/10.1002/pc.23847

  59. Faruk O, Bledzki AK, Fink H-P, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  60. Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber based polymer composites and their applications. In: Cellulose fibers: bio-and nano-polymer composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 589–659. https://doi.org/10.1007/978-3-642-17370-7_22

  61. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44(1):120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  62. Tavares TD, Antunes JC, Ferreira F, Felgueiras HP (2020) Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules 10(1):148. https://doi.org/10.3390/biom10010148

    Article  CAS  Google Scholar 

  63. Yuan H, Wang F, Li S, Lin Z, Huang J (2020) A cellulose substance derived nanofibrous CoS–nanoparticle/carbon composite as a high-performance anodic material for lithium-ion batteries. New J Chem 44(5):1846–1857. https://doi.org/10.1039/C9NJ05587H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from SERB Power Fellowship (project no SPF/2021/000001) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banasri Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soodesh, C.Y., Roy, B. (2023). Natural Fiber and Nanoparticles Reinforced Natural Fiber for Structural Composite Applications. In: Singh, S.B., Gopalarathnam, M., Kodur, V.K.R., Matsagar, V.A. (eds) Fiber Reinforced Polymeric Materials and Sustainable Structures. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-8979-7_11

Download citation

Publish with us

Policies and ethics