Skip to main content

New Methods of Laser Micro- Nanomanufacturing

  • Chapter
  • First Online:
Fundamental Research on Nanomanufacturing

Abstract

Laser manufacturing is a manufacturing method that uses the interaction between laser and matter to make it undergo heating, melting, vaporization, evaporation, sublimation, coulomb explosion, electrostatic stripping and other processes, thus realizing the forming and forming of parts/components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng F, Pu Z, He E et al (2018) From functional structure to packaging: full-printing fabrication of a microfluidic chip. Lab Chip 18(13):1859–1866

    Article  Google Scholar 

  2. Jiang L (2018) Electrons dynamics control by shaping femtosecond laser pulses in micro/ nanofabrication: modeling, method, measurement and application. Light Sci Appl 7(2):17134.

    Google Scholar 

  3. Zewai AH (1988) Laser femtochemistry. Science 242(4886):1645–1653

    Article  Google Scholar 

  4. Pan C (2019) The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses. J Appl Phys 58(3):030901

    Google Scholar 

  5. Zhang K (2014) Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons. J Phy D Appl Phys 47(43):435105

    Article  Google Scholar 

  6. Wang C (2012) First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation. J Phys Condens Matter 24(27):275801

    Article  Google Scholar 

  7. Yuan Y (2012) Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics. J Phy D Appl Phys 45(17):175301

    Article  Google Scholar 

  8. Yuan Y (2012) Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains. J Appl Phys 112(10):103103

    Article  Google Scholar 

  9. Jiang L, Tsai HL (2004) Prediction of crater shape in femtosecond laser ablation of di-electrics. J Phys D Appl Phys 37(10):1492

    Article  Google Scholar 

  10. Jiang L, Tsai HL (2005) Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl Phys Lett 87(15):151104

    Article  Google Scholar 

  11. Wang A (2015) Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv Mater 27(40):6238–6243

    Article  Google Scholar 

  12. Wang GB, Li M, Ding YC et al (2010) Background, implementation, and management measure of the major research plan “fundamental study on nanomanufacturing”. Bul Natl Nat Sci Found China 24(2):70–77. (in Chinese) (王国彪, 黎明, 丁玉成, 等. 重大研究计划 “纳米制造的基础研究” 综述. 中 国科学基金.)

    Google Scholar 

  13. He E, Cao T, Cai L et al (2018) A disposable microcapsule array chip fabricated by ice printing combined with isothermal amplification for Salmonella DNA detection. RSC Adv 8(69):39561–39566

    Article  Google Scholar 

  14. Zhao M (2015) Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control. Sci Rep 5:13202

    Article  Google Scholar 

  15. Xie Q (2016) High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser bessel beam. Appl Phys A 122(2):136

    Article  Google Scholar 

  16. Qiu L (2014) Real-time laser differential confocal microscopy without sample reflectivity effects. Opt Express 22(18):21626–21640

    Article  Google Scholar 

  17. Qiu L, Zhao W, Wang Y (2015) Laser differential confocal focal-length measurement and its instrument. In: Applications of lasers for sensing and free space communications.

    Google Scholar 

  18. Jiang L (2011) Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment. Opt Express 19(18):17591–17598

    Article  Google Scholar 

  19. Li B (2012) High sensitivity mach-zehnder interferometer sensors based on concatenated ultra-abrupt tapers on thinned fibers. Opt Laser Technol 44(3):640–645

    Article  Google Scholar 

  20. Yu Y (2013) Fiber inline interferometric refractive index sensors fabricated by femtosecond laser and fusion splicing. Chin Opt Lett 11(11):110603

    Article  Google Scholar 

  21. Luo Z (2015) One-step fabrication of annular microstructures based on improved femtosecond laser bessel-gaussian beam shaping. Appl Opt 54(13):3943–3947

    Article  Google Scholar 

  22. Sun XY (2016) Highly sensitive refractive index fiber inline mach-zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching. Opt Laser Technol 77:11–15

    Article  Google Scholar 

  23. Wang C (2015) Adjustable annular rings of periodic surface structures induced by spatially shaped femtosecond laser. Laser Phys Lett 12(5):056001

    Article  Google Scholar 

  24. Wu D (2011) Curvature-driven reversible in situ switching between pinned and rolldown superhydrophobic states for water droplet transportation. Adv Mater 23(4):545–549

    Article  MathSciNet  Google Scholar 

  25. Xia H (2010) Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater 22(29):3204–3207

    Article  Google Scholar 

  26. Fang HH (2010) Two-photon pumped amplified spontaneous emission from cyanosubstituted oligo (p-phenylenevinylene) crystals with aggregation-induced emission enhancement. J Phys Chem C 114(27):11958–11961

    Article  Google Scholar 

  27. Zhang YL (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5(5):435–448

    Article  Google Scholar 

  28. Cheng H (2013) Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Edit 52(40):10482–10486

    Article  Google Scholar 

  29. Gao J (2018) Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14(37):1801809

    Article  Google Scholar 

  30. Zhao Y (2017) Integrated graphene systems by laser irradiation for advanced devices. Nano Today 12:14–30

    Article  Google Scholar 

  31. Qian H (2016) Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res 9(3):876–885

    Article  Google Scholar 

  32. Huang L (2018) Colloid-interface-assisted laser irradiation of nanocrystals superlattices to be scalable plasmonic superstructures with novel activities. Small 14(16):1703501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, B. et al. (2023). New Methods of Laser Micro- Nanomanufacturing. In: Lu, B. (eds) Fundamental Research on Nanomanufacturing. Reports of China’s Basic Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-8975-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8975-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8974-2

  • Online ISBN: 978-981-19-8975-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics