Skip to main content

Consistent Manufacturing of Macro, Micro and Nano Cross-Scale Structures

  • Chapter
  • First Online:
Fundamental Research on Nanomanufacturing

Abstract

Nanotechnology is widely used in many fields such as information, optoelectronics, materials, environment, energy, biology, medicine and national defense security. Nanostructure is the functional carrier of almost all nano devices/products/systems, and its forming principle and method are one of the research focuses of nanomanufacturing. Taking a planar lens as an example, a lens with a thickness of only 1 μm can focus all kinds of light waves of any polarization state at one point, and its imaging performance is equivalent to that of a first-class complex lens system. The functional carrier of planar lens is its nanostructure, which is mainly characterized by “super pixel” structure with characteristic scale below tens of nanometers; nanostructured materials are functional materials, such as photoelectric materials like TiO2; the scale of device or system level can reach more than tens of millimeters, ensuring large format consistency and morphology accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mugele F, Baret JC (2015) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705

    Article  Google Scholar 

  2. Li X, Tian H, Shao J et al (2016) Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid-solid interfaces. Adv Funct Mater 26(18):2994–3002

    Article  Google Scholar 

  3. Chen X, Shao J, An N et al (2015) Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C 3(45):11806–11814

    Article  Google Scholar 

  4. Cao J, An Q, Liu Z et al (2019) Electrowetting on liquid-infused membrane for flexible and reliable digital droplet manipulation and application, sensors actuators B. Chem 291:470–477

    Google Scholar 

  5. Xu Q, Dai B, Huang Y et al (2018) Fabrication of polymer microlens array with controllable focal length by modifying surface wettability. Opt Express 26(4):4172–4182

    Article  Google Scholar 

  6. Liu J, Wan L, Zhang M et al (2017) Electrowetting-induced morphological evolution of metal-organic inverse opals toward a water-lithography approach. Adv Funct Mater 27(7):1605221

    Article  Google Scholar 

  7. Song HC, Maurya D, Sanghadasa M et al (2017) Interface controlled growth of single crystalline PbTiO3 nanostructured arrays. J Phys Chem C 121(48):7191–27198

    Article  Google Scholar 

  8. Tian H, Shao J, Ding Y et al (2014) Electrohydrodynamic micro-/nanostructuring processes based on prepatterned polymer and prepatterned template. Macromolecules 47(4):1433–1438

    Article  Google Scholar 

  9. Wang Y, Hu H, Shao J et al (2014) Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Appl Mater Interfaces 6(4):2213–2218

    Article  Google Scholar 

  10. Li X, Tian H, Ding Y et al (2013) Electrically template dewetting of a UV-curable pre-polymer film for the fabrication of a concave microlens array with well-defined curvature. ACS Appl Mater Interfaces 5(20):9975–9982

    Article  Google Scholar 

  11. Hu H, Tian H, Shao J et al (2017) Friction contribution to bioinspired mushroom-shaped dry adhesives. Adv Mate Interfaces 4(9):1700016

    Article  Google Scholar 

  12. Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):165–169

    Google Scholar 

  13. Nazaripoor H, Koch CR, Sadrzadeh M et al (2016) Thermo-electrohydrodynamic patterning in nanofilms. Langmuir 32(23):5776–5786

    Article  Google Scholar 

  14. Hyun DC, Park M, Jeong UJ (2016) Micropatterning by controlled liquid instabilities and its applications. J Mater Chem C 4(44):10411–10429

    Article  Google Scholar 

  15. Demirörs AF, Crassous JJ (2017) Colloidal assembly and 3D shaping by dielectrophoretic confinement. Soft Matter 13(17):3182–3189

    Article  Google Scholar 

  16. Malshe AP, Bapat S, Rajurkar KP et al (2018) Bio-inspired textures for functional applications. CIRP Ann 67(2):627–650

    Article  Google Scholar 

  17. Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nature Mater 8(1):62

    Article  Google Scholar 

  18. Chen X, Tian H, Li X et al (2015) A high performance P (VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale 7(27):11536–11544

    Article  Google Scholar 

  19. Chen X, Li X, Shao J et al (2017) High-performance piezoelectric nanogenerators with imprinted P (VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13:1604245

    Article  Google Scholar 

  20. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28(22):4283–4305

    Article  Google Scholar 

  21. Stadlober B, Zirkl M, Irimia-Vladu M (2019) Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem Soc Rev 48(6):1787–1825

    Article  Google Scholar 

  22. Peng H, Sun X, Weng W et al (2016) Polymer materials for energy and electronic applications. Academic Press

    Google Scholar 

  23. Schift H (2015) Nanoimprint lithography: 2D or not 2D? A review. Appl Phys A 121(2):415–435

    Article  Google Scholar 

  24. Chou SY, Keimel C, Gu J (2002) Ultrafast and direct imprint of nanostructures in silicon. Nature 417:835

    Article  Google Scholar 

  25. Grzybowski BA, Bishop KJM (2009) Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel. Stamps 5(1):22–27

    Google Scholar 

  26. Hsu K, Schultz P, Ferreira P et al (2009) Exploiting transport of guest metal ions in a host ionic crystal lattice for nanofabrication: Cu nanopatterning with Ag2S. Appl Phys A 97(4):863–868

    Article  Google Scholar 

  27. Zhan D, Han L, Zhang J et al (2017) Electrochemical micro/nanomachining: principles and practices. Chem Soc Rev 46(5):1526–1544

    Article  Google Scholar 

  28. Zhan D, Han L, Zhang J et al (2016) Confined chemical etching for electrochemical machining with nanoscale accuracy. Acc Chem Res 49(11):2596–2604

    Article  Google Scholar 

  29. Wen J, Ma T, Zhang W et al (2017) Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations. Comp Mater Sci 131:230–238

    Article  Google Scholar 

  30. Zhang J, Zhang L, Han L et al (2017) Electrochemical nanoimprint lithography: when nanoimprint lithography meets metal assisted chemical etching. Nanoscale 9(22):7476–7482

    Article  Google Scholar 

  31. Zhang L, Zhang J, Yuan D et al (2017) Electrochemical nanoimprint lithography directly on n-type crystalline silicon (111) wafer. Electrochem Commun 75:1–4

    Article  Google Scholar 

  32. Guo C, Zhang L, Sartin et al (2019) Photoelectric effect accelerated electrochemical corrosion and nanoimprint processes on gallium arsenide wafers. Chem Sci 10(23):5893–5897

    Google Scholar 

  33. Zhang J, Dong BY, Jia J et al (2016) Electrochemical buckling microfabrication. Chem Sci 7(1):697–701

    Article  Google Scholar 

  34. Xiao C, Xin XJ, He X et al (2019) Surface structure dependence of mechanochemical etching: scanning probe-based nanolithography study on Si (100), Si(110), and Si (111). ACS Appl Mater Interfaces 11:20583–20588

    Article  Google Scholar 

  35. Wang C, Shao J, Tian H et al (2016) Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano 10(4):4354–4363

    Article  Google Scholar 

  36. Li X, Shao J, Tian H et al (2011) Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting. J Micromech Microeng 21(6):065010

    Article  Google Scholar 

  37. Liang X, Zhang W, Li M et al (2005) Electrostatic force-assisted nanoimprint lithography (EFAN). Nano Lett 5(3):527–530

    Article  Google Scholar 

  38. Wang C, Shao J, Tian H et al (2019) Protective integrated transparent conductive film with high mechanical stability and uniform electric-field distribution. Nanotechnology 30(18):185303

    Article  Google Scholar 

  39. Bosse H, Wilkening G (2005) Developments at PTB in nanometrology for support of the semiconductor industry. Meas Sci Technol 16(11):2155

    Article  Google Scholar 

  40. Butler H (2011) Position control in lithographic equipment. IEEE Cont Syst Mag 31(5):28–47

    Article  MATH  Google Scholar 

  41. Ye G, Fan S, Liu H et al (2014) Design of a precise and robust linearized converter for optical encoders using a ratiometric technique. Meas Sci Technol 25(12):125003

    Article  Google Scholar 

  42. Ye G, Liu H, Wang Y et al (2018) Ratiometric-linearization-based high-precision electronic interpolator for sinusoidal optical encoders. IEEE T Ind Electron 65(10):8224–8231

    Article  Google Scholar 

  43. Ye G, Liu H, Shi Y et al (2016) Optimizing design of an optical encoder based on generalized grating imaging. Meas Sci Technol 27(11):115005

    Article  Google Scholar 

  44. Ye G, Liu H, Ban Y et al (2018) Development of a reflective optical encoder with submicron accuracy. Opt Commun 411:126–132

    Article  Google Scholar 

  45. Ye G, Liu H, Fan S et al (2015) A theoretical investigation of generalized grating imaging and its application to optical encoders. Opt Commun 354:21–27

    Article  Google Scholar 

  46. Ye G, Liu H, Jiang W et al (2017) Design and development of an optical encoder with sub-micron accuracy using a multiple-tracks analyser grating. Rev Sci Instrum 88(1):015003

    Article  Google Scholar 

  47. Ye G, Liu H, Fan S et al (2015) Precise and robust position estimation for optical incremental encoders using a linearization technique. Sensor Actuat A: Phys 232:30–38

    Article  Google Scholar 

  48. Liu H, Ye G, Shi Y et al (2016) Multiple harmonics suppression for optical encoders based on generalized grating imaging. J Modern Opt 63(16):1564–1572

    Article  MathSciNet  MATH  Google Scholar 

  49. Partridge H J A R C (1989) Moffett field, national aeronautics and space administration (NASA). Tech Memo 1(15):101044

    Google Scholar 

  50. Hu H, Tian H, Li X et al (2014) Biomimetic mushroom-shaped microfibers for dry adhesives by electrically induced polymer deformation. ACS Appl Mater Interfaces 6(16):14167–14173

    Article  Google Scholar 

  51. Hu H, Tian H, Shao J et al (2017) Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. ACS Appl Mater & Interfaces 9(8):7752–7760

    Article  Google Scholar 

  52. Li X, Tian H, Shao J et al (2013) Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights. Langmuir 29(5):1351–1355

    Article  Google Scholar 

  53. Li X, Tian H, Wang C et al (2014) Electrowetting assisted air detrapping in transfer micromolding for difficult-to-mold microstructures. ACS Appl Mater & Interfaces 6(15):12737–12743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, B. et al. (2023). Consistent Manufacturing of Macro, Micro and Nano Cross-Scale Structures. In: Lu, B. (eds) Fundamental Research on Nanomanufacturing. Reports of China’s Basic Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-8975-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8975-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8974-2

  • Online ISBN: 978-981-19-8975-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics