Skip to main content

Nano/Sub-nanometer Precision Manufacturing

  • Chapter
  • First Online:
Fundamental Research on Nanomanufacturing

Abstract

Nanoprecision surface manufacturing has been widely used in many high-tech fields such as VLSI (very large scale integrated circuit) manufacturing and high-precision optical manufacturing, which provides strong support for the development of national defense, national economy, science and technology. Taking integrated circuit (IC) as an example, high-precision wafer processing and high-precision lithography objective lenses processing are two crucial technologies in IC manufacturing. For wafer surface manufacturing, the process with feature dimensions less than 14 nm requires that the wafer surface roughness Ra with a diameter of 300 mm reaches 0.1 nm, and the material thickness deviation should be controlled to the scale of 30 nm, i.e. 1/10 billion of the diameter, and the surface/ subsurface has no damages and defects such as cracks, residual stresses and scratches; for the lithography objective lens, the lithography process with a feature dimension of 14 nm uses extreme ultraviolet (EUV) light with a wavelength of 13.5 nm, and its optical parts of the lithography system require full-frequency error control: the low-frequency surface error (the spatial period is 1 mm to the full aperture of the optical parts) must reach 0.25 nm RMS, the intermediate frequency roughness error (the period is 1 μm–1 mm) must be about 0.2 nm RMS, and the high-frequency roughness error (the period is less than 1 μm) must be less than 0.1 nm RMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen L, Wen J, Zhang P et al (2018) Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nature Commun 9(1):1542

    Article  Google Scholar 

  2. Li H, Wang T, Zhao Q et al (2015) Kinematic analysis of in situ measurement during chemical mechanical planarization process. Rev Sci Instrum 86(10):105118

    Article  Google Scholar 

  3. Wen J, Ma T, Zhang W et al (2017) Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations. Comp Mater Sci 131:230–238

    Article  Google Scholar 

  4. Wen J, Ma T, Zhang W et al (2017) Surface orientation and temperature effects on the interaction of silicon with water: molecular dynamics simulations using ReaxFF reactive force field. J Phys Chem A 121(3):587–594

    Article  Google Scholar 

  5. Wen J, Ma T, Lu X et al (2017) Atomic insights into material removal mechanisms in Si and Cu chemical mechanical polishing processes: ReaxFF reactive molecular dynamics simulations. ICPT: 1–3

    Google Scholar 

  6. Wen J, Ma T, Zhang W et al (2016) Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: molecular dynamics simulations using ReaxFF reactive force field. Appl Surf Sci 390:216–223

    Article  Google Scholar 

  7. Xiao C, Xin XJ, He X et al (2019) Surface structure dependence of mechanochemical etching: scanning probe-based nanolithography study on Si (100), Si(110), and Si (111). ACS Appl Mater Interfaces 11:20583–20588

    Article  Google Scholar 

  8. Liu ZH, Gong J, Xiao C et al (2019) Temperature-dependent mechanochemical wear of silicon in water: The role of Si-OH surfacial groups. Langmuir 35:7735–7743

    Article  Google Scholar 

  9. Wang XD, Kim SH, Chen C et al (2015) Humidity dependence of tribochemical wear of monocrystalline silicon. ACS Appl Mater Interfaces 7:14785–14792

    Article  Google Scholar 

  10. Zhang Z, Guo D, Wang B et al (2015) A novel approach of high-speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5:16395

    Article  Google Scholar 

  11. Haung N, Yan Y, Zhou P et al (2019) Elastic-plastic deformation of single-crystal silicon in nanocutting by a single-tip tool. Jpn J Appl Phys 58:086501

    Article  Google Scholar 

  12. Zhang Z, Wang B, Kang R et al (2015) Changes in surface layer of silicon wafers from diamond scratching. Cirp Ann-Manuf Techn 64(1):349–352

    Article  Google Scholar 

  13. Guo X, Li Q, Liu T (2016) Molecular dynamics study on the thickness of damage layer in multiple grinding of monocrystalline silicon. Mater Sci Semicon Proc 51:15–19

    Article  Google Scholar 

  14. Guo X, Zhai C, Kang R (2015) The mechanical properties of the scratched surface for silica glass by molecular dynamics simulation. J Non-Cryst Solids 420:1–6

    Article  Google Scholar 

  15. Gao S, Kang R, Dong Z et al (2013) Edge chipping of silicon wafers in diamond grinding. Int J Mach Tool Manu 64:31–37

    Article  Google Scholar 

  16. Lin B, Zhou P, Wang Z et al (2018) Analytical elastic-plastic cutting model for predicting grain depth-of-cut in ultrafine grinding of silicon wafer. J Manuf Sci Eng 140(12):121001

    Article  Google Scholar 

  17. Liu T, Guo X, Li Q (2017) Study on the surface damage layer in multiple grinding of quartz glass by molecular dynamics simulation. J Nano Res 46:192–202

    Article  Google Scholar 

  18. Zhou P, Yan Y, Huang N et al (2017) Residual stress distribution in silicon wafers machined by rotational grinding. J Manuf Sci Eng 139(8):081012

    Article  Google Scholar 

  19. Gao S, Huang H, Zhu X et al (2017) Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel. Mater Sci Semicon Proc 63:97–106

    Article  Google Scholar 

  20. Zhang Z, Cui J, Wang B et al (2017) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    Article  Google Scholar 

  21. Zhang Z, Du Y, Wang B et al (2017) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65(4):132

    Article  Google Scholar 

  22. Gao S, Dong Z, Kang R et al (2013) Design and evaluation of soft abrasive grinding wheels for silicon wafers. Proc Inst Mech Eng Part B: J Eng Manuf 227(4):578–586

    Article  Google Scholar 

  23. Li J, Liu Y, Dai Y et al (2013) Achievement of a near-perfect smooth silicon surface. Sci China Technol Sci 56(11):2847–2853

    Article  Google Scholar 

  24. Nie X, Li S, Shi F et al (2014) Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors. Appl Opt 53(6):1020–1027

    Article  Google Scholar 

  25. Nie X, Li S, Hu H et al (2014) Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process. Appl Opt 53(28):6332–6339

    Article  Google Scholar 

  26. Lu Y, Xie X, Zhou L et al (2016) Design and performance analysis of ultra-precision ion beam polishing tool. Appl Opt 55(7):1544–1550

    Article  Google Scholar 

  27. Lu Y, Xie X, Zhou L et al (2017) Improve the optics fabrication efficiency by using a radio frequency ion beam figuring tool. Appl Optics 56(2):260–266

    Article  Google Scholar 

  28. Liao W, Dai Y, Xie X et al (2014) Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces. Appl Opt 53(11):2487–2493

    Article  Google Scholar 

  29. Liao W, Dai Y, Xie X et al (2014) Microscopic morphology evolution during ion beam smoothing of Zerodur surfaces. Opt Express 22(1):377–386

    Article  Google Scholar 

  30. Liao W, Dai Y, Xie X et al (2014) Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces part 1: mathematical modeling. Appl Opt 53(19):4266–4274

    Article  Google Scholar 

  31. Liao W, Dai Y, Xie X et al (2014) Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces part 2: application. Appl Opt 53(19):4275–4281

    Article  Google Scholar 

  32. Liao W, Dai Y, Xie X et al (2013) Combined figuring technology for high-precision optical surfaces using a deterministic ion beam material adding and removal method. Opt Eng 52(1):010503

    Article  Google Scholar 

  33. Liao W, Dai Y, Xie X et al (2013) Deterministic ion beam material adding technology for high-precision optical surfaces. Appl Opt 52(6):1302–1309

    Article  Google Scholar 

  34. Zhao D, Lu X (2013) Chemical mechanical polishing: theory and experiment. Friction 1(4):306–326

    Article  Google Scholar 

  35. Li C, Zhao D, Wen J et al (2018) Evolution of entrained water film thickness and dynamics of Marangoni flow in Marangoni drying. RSC Adv 8(9):4995–5004

    Article  Google Scholar 

  36. Li C, Zhao D, Wen J et al (2019) Numerical investigation of wafer drying induced by the thermal Marangoni effect. Int J Heat Mass Transf 132:689–698

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, B. et al. (2023). Nano/Sub-nanometer Precision Manufacturing. In: Lu, B. (eds) Fundamental Research on Nanomanufacturing. Reports of China’s Basic Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-8975-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8975-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8974-2

  • Online ISBN: 978-981-19-8975-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics