Skip to main content

Research in China and Abroad

  • Chapter
  • First Online:
Key Basic Scientific Problems on Near-Space Vehicles

Part of the book series: Reports of China’s Basic Research ((RCBR))

  • 200 Accesses

Abstract

The daily life of humans depends on the utilization of time and space, and progress is made by knowledge and science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Index of NSAEBB [EB/OL] (10 Aug 2017) [20 Oct 2019] https://nsarchive2.gwu.edu/NSAEBB/NSAEBB434/docs

  2. Xue H, Khawaja H, Moatamedi M (2014) Conceptual design of high speed supersonic aircraft: a brief review on SR-71 (blackbird) aircraft [C]. 10th international conference on mathematical problems in engineering. Aerospace and Sciences, Narvik, Norway

    Google Scholar 

  3. Merlin PW (2009) Design and development of the blackbird: Challenges and lessons learned [C]. 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Orlando, Florida, US

    Google Scholar 

  4. Sanger E (1942) Recent results in rocket flight technique [R]. National Advisory Committee for Aeronautics, Washington, DC

    Google Scholar 

  5. Launius RD, Jenkins DR (2012) Coming Home: reentry and recovery from space [M]. US Government Printing Office, Washington, DC

    Google Scholar 

  6. Hallion RP (2005) The history of hypersonics: or, Back to the future: again and again [C]. 43rd AIAA aerospace sciences meeting and exhibit. Reno, Nevada, US

    Google Scholar 

  7. Guan SY (2009) Progress of flight mechanics related to Prof. Qian XS [J]. Tactical Missile Technol (6):1–8. (in Chinese) (关世义. 钱学森与现代飞行力学. 战术导弹技术.)

    Google Scholar 

  8. Xuesen Q. Teaching graduate students at California institute of technology [EB/OL]. (1 Oct 2010) [20 Oct 2019]. http://www.cas.cn/zt/rwzt/qxsssyzn/sptj/201010/t20101031_3000086.html

  9. FDL-6 Suborbital Maneuvering Vehicle (SOMV) (1975) [EB/OL]. [20 Oct 2019]. http://fantastic-plastic.com/fdl-6-suborbital-maneuvering-vehicle-somv-by-fantastic-plastic.html

  10. Knudsen B (2017) An examination of US hypersonic weapon systems [R]. George Washington University, Washington, DC

    Google Scholar 

  11. Cui EJ (2009) Research statutes, development trends and key technical problems of near space flying vehicles [J]. Advan Mech 39(6):658–673. (in Chinese) (崔尔杰. 近空间飞行器研究发展现状及关键技术问题. 力学进展.)

    Google Scholar 

  12. Walker HS, Rodgers F (2005) Falcon hypersonic technology overview [C]. AIAA/CIRA 13th international space planes and hypersonics systems and technologies conference. Capua, Italy

    Google Scholar 

  13. Freeman DC, Reubush DE, McClinton CR et al (1997) The NASA hyper-X program [R]. International Astronautical Federation, Paris

    Google Scholar 

  14. McClinton CR, Rausch VL, Sitz J et al (2001) Hyper-X program status [C]. 39th aerospace sciences meeting and exhibit. Reno, Nevada, US

    Google Scholar 

  15. Leonard CP, Amundsen RM, Bruce WE (2005) Hyper-X hot structures design and comparison with flight data [C]. AIAA/CIRA 13th international space planes and hypersonics systems and technologies conference. Capua, Italy

    Google Scholar 

  16. Mercier RA, Ronald TMF (1998) Hypersonic technology (HyTech) program overview [C]. 8th AIAA international space planes and hypersonic systems and technologies conference. Norfolk, Virginia, U.S

    Google Scholar 

  17. Powell OA, Edwards JT, Norris RB et al (2001) Development of hydrocarbon-fueled scramjet engines: the hypersonic technology (HyTech) program [J]. J Propul Power 17(6):1170–1176

    Article  Google Scholar 

  18. Richman MS, Kenyon JA, Sega RM (2005) High speed and hypersonic science and technology [C]. 41st AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. Tucson, Arizona, US

    Google Scholar 

  19. Walker SH, Sherk CJ, Shell D et al (2008) The DARPA/AF falcon program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase [C]. 15th AIAA international space planes and hypersonic systems and technologies conference. Dayton, Ohio, US

    Google Scholar 

  20. Jorris TR (2014) Recent and on-going hypersonic, space transit, and space launch flight tests [C]. AIAA flight testing conference. Atlanta, Georgia, US

    Google Scholar 

  21. Schulz MC, Wetherall R (2011) Falcon hypersonic technology vehicle (HTV-2) [R]. DARPA, Arlington, Virginia

    Google Scholar 

  22. Zhen HP, Jiang CW (2013) Review of hypersonic technology verification vehicle HTV-2 [J]. Aerodyn Missile J (6):7–13. (in Chinese) (甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述. 飞航导弹.)

    Google Scholar 

  23. ARPA engineering review board concludes review of HTV-2 second test flight [EB/OL]. (20 April 2012) [20 Oct 2019]. http://www.airplanesandrockets.com/resources/DARPAEngineering-Review-Board-HTV-2-Test-Flight.htm

  24. Clark H. Labs technology launched in first test flight of army’s conventional advanced hypersonic weapon [EB/OL]. (18 May 2012) [21 Oct 2019]. https://www.sandia.gov/LabNews/120518.html

  25. Malik T. US military blows up hypersonic weapon after failed test launch [EB/OL]. (26 Aug 2014) [21 Oct 2019]. https://www.space.com/26944-us-military-hypersonic-weapontest-explodes.html

  26. Advanced hypersonic weapon [EB/OL]. [21 Oct 2019]. https://www.globalsecurity.org/military/systems/munitions/ahw.htm

  27. Hank JM, Murphy JS, Mutzman RC (2008) The X-51A scramjet engine flight demonstration program [C]. 15th AIAA international space planes and hypersonic systems and technologies conference. Dayton, Ohio, US

    Google Scholar 

  28. Tang M, Chase RL (2008) The quest for hypersonic flight with air-breathing propulsion [C]. 15th AIAA international space planes and hypersonic systems and technologies conference. Dayton, Ohio, US

    Google Scholar 

  29. Li GZ, Yu TC, Lai ZH (2014) Development and thinking of the US hypersonic vehicle X-51A [J]. Aerodyn Missile J (5):5–8. (in Chinese) (李国忠, 于廷臣, 赖正华. 美国X-51A高超声速飞行器的发展与思考. 飞航导弹.)

    Google Scholar 

  30. Williams A. DARPA continues push toward high-speed aircraft with new integrated hypersonics program [EB/OL]. (10 July 2012) [21 Oct 2019]. https://newatlas.com/darpa-integrated-hypersonics-program-mach-20-x-plane/23243

  31. Warwick G. Hypersonic X-Plane (HX)—DARPA tries again [EB/OL]. (24 Aug 2012) [21 Oct 2019]. https://wiki.nps.edu/display/CRUSER/2012/08/28/Hypersonic+X-Plane+%28HX%29+-+DARPA+Tries+Again

  32. Anthony S. US military’s experimental hypersonic weapon explodes seconds after launch [EB/OL]. (26 Aug 2014) [22 Oct 2019]. https://www.extremetech.com/extreme/188675-usmilitarys-experimental-hypersonic-weapon-explodes-seconds-after-launch

  33. Trevithick J. The B-52 looks set to become the USAF’s hypersonic weapons truck of choice [EB/OL]. (28 Aug 2018) [22 Oct 2019]. https://www.thedrive.com/the-war-zone/23200/the-b-52-looks-set-to-become-the-usafs-hypersonic-weapons-truck-of-choice

  34. DARPA to launch test flight for two hypersonic weapons [EB/OL]. (07 May 2019) [22 Oct 2019]. http://en.c4defence.com/Agenda/darpa-to-launch-test-flight-for-twohypersonic-weapons/8140/1

  35. Zhang Q (2016) Overview of global hypersonic air-breathing propulsion technology in 2015 [J]. Aerodyn Missile J (10):7–11. (in Chinese) (张茜. 2015年全球高超声速吸气式推进技术发展综述. 飞航导弹.)

    Google Scholar 

  36. Waters D (2015) DARPA perspective [R]. DARPA, Arlington, Virginia

    Google Scholar 

  37. Urban D (2016) The DARPA science and technology program [C]. India 17th annual science and engineering technology conference. Tampa, Florida, US

    Google Scholar 

  38. Arefyev KY, Kukshinov NV, Prokhorov AN (2019) Analysis of development trends of power-units for high-speed flying vehicles [J]. J Phys: Conf Ser 1147:012055

    Google Scholar 

  39. Ma N, Men WW, Wang ZQ et al (2017) Research and analysis of SR-72 hypersonic aircraft [J]. Aerodyn Missile J (1):14–20. (in Chinese) (马娜, 门薇薇, 王志强, 等. SR-72高超声速飞机研制分析. 飞航导弹.)

    Google Scholar 

  40. Norris G. Skunk works reveals SR-71 successor plan [EB/OL]. (01 Nov 2013) [22 Oct 2019]. https://aviationweek.com/technology/skunk-works-reveals-sr-71-successor-plan

  41. Zhong Y, Liu DH, Wang C (2018) Research progress of key technologies for typical reusable launcher vehicles [C]. 2nd international conference on aerospace technology, communications and energy systems. Shanghai, China

    Google Scholar 

  42. Howell E. XS-1: DARPA’s experimental spaceplane [EB/OL]. (27 April 2018) [23 Oct 2019]. https://www.space.com/29287-xs1-experimental-spaceplane.html

  43. Sponable J (2014) Experimental spaceplane (XS-1) [R]. Arlington, Virginia, DARPA

    Google Scholar 

  44. Wei HG, Lu YD, Li Q et al (2016) Reentry technique analysis of European IXV [J]. Spacecraft Eng 25(1):131–140. (in Chinese) (魏昊功, 陆亚东, 李齐, 等. 欧洲“过渡试验飞行器”再入返回技术综述. 航天器工程.)

    Google Scholar 

  45. Wang WJ, Li YY (2016) Study of European IXV and analysis of IXV flight test [J]. Space Int (1):78–82. (in Chinese) (王卫杰, 李怡勇. 欧洲“过渡型试验飞行器”研究与飞行试验情况分析. 国际太空.)

    Google Scholar 

  46. Tumino G, Mancuso S, Gallego JM et al (2016) The IXV experience, from the mission conception to the flight results [J]. Acta Astronaut 124:2–17

    Article  Google Scholar 

  47. Mark H (2013) Progress on Skylon and SABRE [C]. 64th international astronautical congress. Beijing, China

    Google Scholar 

  48. Nie WS, Zhou SY, Lei X (2016) Research progress on synergetic air breathing rocket engine technology [J]. J Equipment Acad 27(16):57–64. (in Chinese) (聂万胜, 周思引, 雷旭. 协同吸气式火箭发动机研究进展. 装备学院学报.)

    Google Scholar 

  49. US Air Force confirms hypersonic SABRE engine feasible [EB/OL]. (20 April 2015) [23 Oct 2019]. https://www.nextbigfuture.com/2015/04/us-air-force-confirms-hypersonic-sabre.html

  50. Sodhi C (2016) ZIRCON: the Russian hypersonic cruise missile [R]. Centre for Air Power Studies, New Delhi

    Google Scholar 

  51. Robinson JS, Martin JG, Bowles JV et al (2006) An overview of the role of systems analysis in NASA’s hypersonics project [C]. 14th AIAA/AHI space planes and hypersonic systems and technologies conference. Canberra, Australia

    Google Scholar 

  52. Schmisseur JD (2015) Hypersonic into the 21st century: a perspective on AFOSR-sponsored research in aerothermodynamics [J]. Prog Aerosp Sci 72:3–16

    Article  Google Scholar 

  53. Li JF, Niu W, Li WJ (2013) Australia successfully completed the 5th test of HIFiRE [J]. Aerodyn Missile J (1):14–16. (in Chinese) (李婧芳, 牛文, 李文杰. 澳大利亚成功完成HIFiRE的第5次试验. 飞航导弹.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, S. et al. (2023). Research in China and Abroad. In: Du, S. (eds) Key Basic Scientific Problems on Near-Space Vehicles. Reports of China’s Basic Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-8907-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8907-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8906-3

  • Online ISBN: 978-981-19-8907-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics