Skip to main content

Evaluation and Early Warning Systems of Ovarian Aging

  • Chapter
  • First Online:
Ovarian Aging

Abstract

With the development of society, the advancement of science and technology, and the improvement of medical skill, the life span of human beings has been continually extended. However, the reproductive life span of women has not been prolonged significantly, which means that the postmenopausal period has gradually lengthened. For women, the core of reproductive aging is ovarian aging, that is, the decline of ovarian function with age. Affected by genetic, environmental, and lifestyle factors, this pathophysiologic process is based on the decline of follicular quantity and quality, and finally ending with menopause, which affects multiple bodily organs and leads to related complications. Ovarian aging has a profound impact on women’s health and even on their offspring. Therefore, accurately evaluating ovarian aging and predicting ovarian life span are both crucial for women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  2. Sun X, et al. Ovarian aging: an ongoing prospective community-based cohort study in middle-aged Chinese women. Climacteric. 2018;21(4):404–10.

    Article  CAS  PubMed  Google Scholar 

  3. Faddy MJ, et al. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342–6.

    Article  CAS  PubMed  Google Scholar 

  4. Harlow SD, et al. Executive summary of the stages of reproductive aging workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97(4):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Randolph JF Jr, et al. The value of follicle-stimulating hormone concentration and clinical findings as markers of the late menopausal transition. J Clin Endocrinol Metab. 2006;91(8):3034–40.

    Article  CAS  PubMed  Google Scholar 

  6. Brodin T, et al. Menstrual cycle length is an age-independent marker of female fertility: results from 6271 treatment cycles of in vitro fertilization. Fertil Steril. 2008;90(5):1656–61.

    Article  PubMed  Google Scholar 

  7. Hansen KR, et al. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril. 2011;95(1):170–5.

    Article  PubMed  Google Scholar 

  8. Hagen CP, et al. Serum levels of anti-Müllerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J Clin Endocrinol Metab. 2010;95(11):5003–10.

    Article  CAS  PubMed  Google Scholar 

  9. Lie Fong S, et al. Serum anti-müllerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab. 2012;97(12):4650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tal R, Seifer DB. Ovarian reserve testing: a user's guide. Am J Obstet Gynecol. 2017;217(2):129–40.

    Article  PubMed  Google Scholar 

  11. Bernard DJ, Chapman SC, Woodruff TK. Mechanisms of inhibin signal transduction. Recent Prog Horm Res. 2001;56:417–50.

    Article  CAS  PubMed  Google Scholar 

  12. Iliodromiti S, Nelson SM. Biomarkers of ovarian reserve. Biomark Med. 2013;7(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  13. Domingues TS, Rocha AM, Serafini PC. Tests for ovarian reserve: reliability and utility. Curr Opin Obstet Gynecol. 2010;22(4):271–6.

    Article  PubMed  Google Scholar 

  14. Kipp JL, et al. Activin regulates estrogen receptor gene expression in the mouse ovary. J Biol Chem. 2007;282(50):36755.

    Article  CAS  PubMed  Google Scholar 

  15. Petraglia F, et al. Low levels of serum inhibin A and inhibin B in women with hypergonadotropic amenorrhea and evidence of high levels of activin A in women with hypothalamic amenorrhea. Fertil Steril. 1998;70(5):907–12.

    Article  CAS  PubMed  Google Scholar 

  16. Kahraman S, et al. Clomiphene citrate challenge test in the assessment of ovarian reserve before controlled ovarian hyperstimulation for intracytoplasmic sperm injection. Eur J Obstet Gynecol Reprod Biol. 1997;73(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  17. Maheshwari A, et al. Dynamic tests of ovarian reserve: a systematic review of diagnostic accuracy. Reprod Biomed Online. 2009;18(5):717–34.

    Article  PubMed  Google Scholar 

  18. Navot D, Rosenwaks Z, Margalioth E. Prognostic assessment of female fecundity. Lancet. 1987;330(8560):645–7.

    Article  Google Scholar 

  19. Hofmann GE, Danforth DR, Seifer DB. Inhibin-B: the physiologic basis of the clomiphene citrate challenge test for ovarian reserve screening 1This work was supported by The Bethesda Foundation.1. Fertil Steril. 1998;69(3):474–7.

    Article  CAS  PubMed  Google Scholar 

  20. Eldar-Geva T, et al. Dynamic assays of inhibin B, anti-Mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod. 2005;20(11):3178–83.

    Article  CAS  PubMed  Google Scholar 

  21. Padilla SL, Bayati J, Garcia JE. Prognostic value of the early serum estradiol response to leuprolide acetate in in vitro fertilization. Fertil Steril. 1990;53(2):288–94.

    Article  CAS  PubMed  Google Scholar 

  22. Sills ES, Alper MM, Walsh AP. Ovarian reserve screening in infertility: practical applications and theoretical directions for research. Eur J Obstet Gynecol Reprod Biol. 2009;146(1):30–6.

    Article  PubMed  Google Scholar 

  23. Kwee J, et al. Comparison of endocrine tests with respect to their predictive value on the outcome of ovarian hyperstimulation in IVF treatment: results of a prospective randomized study. Hum Reprod. 2003;18(7):1422–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kwee J, et al. The clomiphene citrate challenge test versus the exogenous follicle-stimulating hormone ovarian reserve test as a single test for identification of low responders and hyperresponders to in vitro fertilization. Fertil Steril. 2006;85(6):1714–22.

    Article  PubMed  Google Scholar 

  25. Broekmans FJ, et al. The antral follicle count: practical recommendations for better standardization. Fertil Steril. 2010;94(3):1044–51.

    Article  PubMed  Google Scholar 

  26. Jayaprakasan K, et al. The cohort of antral follicles measuring 2-6 mm reflects the quantitative status of ovarian reserve as assessed by serum levels of anti-Mullerian hormone and response to controlled ovarian stimulation. Fertil Steril. 2010;94(5):1775–81.

    Article  CAS  PubMed  Google Scholar 

  27. Raine-Fenning N, et al. Timing of oocyte maturation and egg collection during controlled ovarian stimulation: a randomized controlled trial evaluating manual and automated measurements of follicle diameter. Fertil Steril. 2010;94(1):184–8.

    Article  PubMed  Google Scholar 

  28. Deb S, et al. Quantitative analysis of antral follicle number and size: a comparison of two-dimensional and automated three-dimensional ultrasound techniques. Ultrasound Obstet Gynecol. 2010;35(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  29. Sample WF, Lippe BM, Gyepes MT. Gray-scale ultrasonography of the normal female pelvis. Radiology. 1977;125(2):477–83.

    Article  CAS  PubMed  Google Scholar 

  30. Moslehi N, et al. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause. 2018;25(9):1046–55.

    Article  PubMed  Google Scholar 

  31. Chern CU, et al. Dehydroepiandrosterone (DHEA) supplementation improves in vitro fertilization outcomes of poor ovarian responders, especially in women with low serum concentration of DHEA-S: a retrospective cohort study. Reprod Biol Endocrinol. 2018;16(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prevention, C.f.D.C.a. Reporting of pregnancy success rates from assisted reproductive technology (ART) programs. Department of Health and Human Services; 2015. 2015–21108

    Google Scholar 

  33. Practice Committee of the American Society for Reproductive Medicine. Electronic address, a.a.o. and M. Practice Committee of the American Society for Reproductive. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114(6):1151–7.

    Article  Google Scholar 

  34. Pastore LM, et al. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet. 2018;35(1):17–23.

    Article  PubMed  Google Scholar 

  35. Ferraretti AP, et al. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.

    Article  CAS  PubMed  Google Scholar 

  36. Yakin K, et al. Bologna criteria are predictive for ovarian response and live birth in subsequent ovarian stimulation cycles. Arch Gynecol Obstet. 2019;299(2):571–7.

    Article  PubMed  Google Scholar 

  37. Albright F, Smith P, Fraser R. A syndrome characterized by primary ovarian insufficiency and decreased stature: report of 11 cases with a digression on hormonal control of axillary and pubic hair. Am J Med Sci. 1942;204:625–48.

    Article  Google Scholar 

  38. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol. 2008;68(4):499–509.

    Article  Google Scholar 

  39. Webber L, et al. ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–37.

    Article  CAS  PubMed  Google Scholar 

  40. Baber RJ, Panay N, Fenton A. 2016 IMS recommendations on women's midlife health and menopause hormone therapy. Climacteric. 2016;19(2):109–50.

    Article  CAS  PubMed  Google Scholar 

  41. Anasti JN. Premature ovarian failure: an update. Fertil Steril. 1998;70:1–15.

    Article  CAS  PubMed  Google Scholar 

  42. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.

    CAS  PubMed  Google Scholar 

  43. Tucker EJ, et al. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–35.

    Article  PubMed  Google Scholar 

  44. Venturella R, et al. OvAge: a new methodology to quantify ovarian reserve combining clinical, biochemical and 3D-ultrasonographic parameters. J Ovarian Res. 2015;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Younis JS, et al. A simple multivariate score could predict ovarian reserve, as well as pregnancy rate, in infertile women. Fertil Steril. 2010;94(2):655–61.

    Article  PubMed  Google Scholar 

  46. Smith WD, et al. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5-6. J Spinal Disord Tech. 2012;25(5):285–91.

    Article  PubMed  Google Scholar 

  47. Nelson HD. Menopause. Lancet. 2008;371(9614):760–70.

    Article  PubMed  Google Scholar 

  48. Hartge P. Genetics of reproductive lifespan. Nat Genet. 2009;41(6):637–8.

    Article  CAS  PubMed  Google Scholar 

  49. He C, et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet. 2009;41(6):724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burger HG. Diagnostic role of follicle-stimulating hormone (FSH) measurements during the menopausal transition—an analysis of FSH, oestradiol and inhibin. Eur J Endocrinol. 1994;130(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  51. Tremellen KP, et al. Anti-mullerian hormone as a marker of ovarian reserve. Aust N Z J Obstet Gynaecol. 2005;45(1):20–4.

    Article  PubMed  Google Scholar 

  52. Jiang B, et al. Bayesian estimation of associations between identified longitudinal hormone subgroups and age at final menstrual period. BMC Med Res Methodol. 2015;15:106.

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Disseldorp J, et al. Relationship of serum antimüllerian hormone concentration to age at menopause. J Clin Endocrinol Metab. 2008;93(6):2129–34.

    Article  PubMed  Google Scholar 

  54. Sowers MR, et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab. 2008;93(9):3478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tehrani FR, Solaymani-Dodaran M, Azizi F. A single test of antimullerian hormone in late reproductive-aged women is a good predictor of menopause. Menopause. 2009;16(4):797–802.

    Article  PubMed  Google Scholar 

  56. Broer SL, et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab. 2011;96(8):2532–9.

    Article  CAS  PubMed  Google Scholar 

  57. Tehrani FR, et al. Modeling age at menopause using serum concentration of anti-mullerian hormone. J Clin Endocrinol Metab. 2013;98(2):729–35.

    Article  CAS  PubMed  Google Scholar 

  58. Depmann M, et al. Does anti-Mullerian hormone predict menopause in the general population? Results of a prospective ongoing cohort study. Hum Reprod. 2016;31(7):1579–87.

    Article  CAS  PubMed  Google Scholar 

  59. de Kat AC, et al. Can menopause prediction be improved with multiple AMH measurements? Results from the prospective Doetinchem Cohort Study. J Clin Endocrinol Metab. 2019;

    Google Scholar 

  60. Ramezani Tehrani F, et al. Flexible parametric survival models built on age-specific antimullerian hormone percentiles are better predictors of menopause. Menopause. 2016;23(6):676–81.

    Article  PubMed  Google Scholar 

  61. Gohari MR, et al. Individualized predictions of time to menopause using multiple measurements of antimullerian hormone. Menopause. 2016;23(8):839–45.

    Article  PubMed  Google Scholar 

  62. Bertone-Johnson ER, et al. Anti-Mullerian hormone levels and incidence of early natural menopause in a prospective study. Hum Reprod. 2018;33(6):1175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim C, et al. Anti-Mullerian hormone, follicle stimulating hormone, antral follicle count, and risk of menopause within 5 years. Maturitas. 2017;102:18–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kien CL, et al. Short-term effects of dietary fatty acids on muscle lipid composition and serum acylcarnitine profile in human subjects. Obesity (Silver Spring). 2011;19(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  65. He C, Murabito JM. Genome-wide association studies of age at menarche and age at natural menopause. Mol Cell Endocrinol. 2014;382(1):767–79.

    Article  CAS  PubMed  Google Scholar 

  66. Shi J, et al. Age at menarche and age at natural menopause in East Asian women: a genome-wide association study. Age (Dordr). 2016;38(5–6):513–23.

    Article  PubMed  Google Scholar 

  67. Shen C, et al. Evaluating GWAS-identified SNPs for age at natural menopause among chinese women. PLoS One. 2013;8(3):e58766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maclaran K, Horner E, Panay N. Premature ovarian failure: long-term sequelae. Menopause Int. 2010;16(1):38–41.

    Article  PubMed  Google Scholar 

  69. Wesselink AK, et al. Age and fecundability in a North American preconception cohort study. Am J Obstet Gynecol. 2017;217(6):667.e1–8.

    Article  PubMed  Google Scholar 

  70. Zhang Q, et al. The influence of age at menarche, menstrual cycle length and bleeding duration on time to pregnancy: a large prospective cohort study among rural Chinese women. BJOG. 2017;124(11):1654–62.

    Article  CAS  PubMed  Google Scholar 

  71. Lum KJ, et al. A Bayesian joint model of menstrual cycle length and fecundity. Biometrics. 2016;72(1):193–203.

    Article  PubMed  Google Scholar 

  72. van der Steeg JW, et al. Predictive value and clinical impact of Basal follicle-stimulating hormone in subfertile, ovulatory women. J Clin Endocrinol Metab. 2007;92(6):2163–8.

    Article  PubMed  Google Scholar 

  73. Steiner AZ, et al. Urinary follicle-stimulating hormone as a measure of natural fertility in a community cohort. Reprod Sci. 2013;20(5):549–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van der Stege JG, van der Linden PJ. Useful predictors of ovarian stimulation response in women undergoing in vitro fertilization. Gynecol Obstet Investig. 2001;52(1):43–6.

    Article  Google Scholar 

  75. Kligman I, Rosenwaks Z. Differentiating clinical profiles: predicting good responders, poor responders, and hyperresponders. Fertil Steril. 2001;76(6):1185–90.

    Article  CAS  PubMed  Google Scholar 

  76. Lass A, et al. IVF performance of women who have fluctuating early follicular FSH levels. J Assist Reprod Genet. 2000;17(10):566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Korsholm AS, et al. Investigation of anti-Mullerian hormone concentrations in relation to natural conception rate and time to pregnancy. Reprod Biomed Online. 2018;36(5):568–75.

    Article  CAS  PubMed  Google Scholar 

  78. Broer SL, et al. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.

    Article  CAS  PubMed  Google Scholar 

  79. Wu CH, et al. Serum anti-Mullerian hormone predicts ovarian response and cycle outcome in IVF patients. J Assist Reprod Genet. 2009;26(7):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Broer SL, et al. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. Hum Reprod Update. 2013;19(1):26–36.

    Article  PubMed  Google Scholar 

  81. Fanchin R, et al. Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod. 2003;18(2):323–7.

    Article  CAS  PubMed  Google Scholar 

  82. Fanchin R, et al. Serum anti-Mullerian hormone dynamics during controlled ovarian hyperstimulation. Hum Reprod. 2003;18(2):328–32.

    Article  CAS  PubMed  Google Scholar 

  83. Brodin T, et al. Antimullerian hormone levels are strongly associated with live-birth rates after assisted reproduction. J Clin Endocrinol Metab. 2013;98(3):1107–14.

    Article  CAS  PubMed  Google Scholar 

  84. Seifer DB, et al. Women with declining ovarian reserve may demonstrate a decrease in day 3 serum inhibin B before a rise in day 3 follicle-stimulating hormone. Fertil Steril. 1999;72(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  85. Danforth DR, et al. Dimeric inhibin: a direct marker of ovarian aging. Fertil Steril. 1998;70(1):119–23.

    Article  CAS  PubMed  Google Scholar 

  86. Tan R, et al. Comparisons of inhibin B versus antimullerian hormone in poor ovarian responders undergoing in vitro fertilization. Fertil Steril. 2011;96(4):905–11.

    Article  CAS  PubMed  Google Scholar 

  87. Seifer DB, et al. Day 3 serum inhibin-B is predictive of assisted reproductive technologies outcome. Fertil Steril. 1997;67(1):110–4.

    Article  CAS  PubMed  Google Scholar 

  88. Smotrich DB, et al. Prognostic value of day 3 estradiol on in vitro fertilization outcome. Fertil Steril. 1995;64(6):1136–40.

    Article  CAS  PubMed  Google Scholar 

  89. Spandorfer S, et al. "co-flare" stimulation in the poor responder patient: predictive value of the flare response. J Assist Reprod Genet. 2001;18(12):629–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kavic S, et al. Controlled ovarian hyperstimulation. Relationship of early serum E2 levels to the ultimate response of oocyte donors. J Reprod Med. 2001;46(7):637–40.

    CAS  PubMed  Google Scholar 

  91. Mukherjee T, et al. An elevated day three follicle-stimulating hormone:luteinizing hormone ratio (FSH:LH) in the presence of a normal day 3 FSH predicts a poor response to controlled ovarian hyperstimulation. Fertil Steril. 1996;65(3):588–93.

    Article  CAS  PubMed  Google Scholar 

  92. Barroso G, et al. High FSH:LH ratio and low LH levels in basal cycle day 3: impact on follicular development and IVF outcome. J Assist Reprod Genet. 2001;18(9):499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Broekmans FJ, et al. Antral follicle counts are related to age at natural fertility loss and age at menopause. Menopause. 2004;11(6 Pt 1):607–14.

    Article  PubMed  Google Scholar 

  94. Bancsi LF, et al. Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril. 2002;77(2):328–36.

    Article  PubMed  Google Scholar 

  95. Engmann L, et al. Value of ovarian stromal blood flow velocity measurement after pituitary suppression in the prediction of ovarian responsiveness and outcome of in vitro fertilization treatment. Fertil Steril. 1999;71(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  96. Steiner AZ, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017;318(14):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Quinn MM, Cedars MI. Cardiovascular health and ovarian aging. Fertil Steril. 2018;110(5):790–3.

    Article  PubMed  Google Scholar 

  98. Colditz GA, Willett W, Stampfer MJ, et al. A prospective study of age at menarche, parity, age at first birth, and coronary heart disease in women. Am J Epidemiol. 1987;126(5):861–70.

    Article  CAS  PubMed  Google Scholar 

  99. Peters SA, Woodward M. Women's reproductive factors and incident cardiovascular disease in the UK Biobank. Heart. 2018;104(13):1069–75.

    Article  CAS  PubMed  Google Scholar 

  100. Ley SH, Li Y, Tobias DK, et al. Duration of reproductive life span, age at menarche, and age at menopause are associated with risk of cardiovascular disease in women. J Am Heart Assoc. 2017;6(11):e006713.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cui R, Iso H, Toyoshima H, et al. Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J Epidemiol. 2006;16(5):177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu G, Yang Y, Huang W, et al. Association of age at menarche with obesity and hypertension among southwestern Chinese women: a new finding. Menopause. 2018;25(5):546–53.

    Article  PubMed  Google Scholar 

  103. Jung KJ, et al. Duration of ovarian hormone exposure and atherosclerotic cardiovascular disease in Korean women: the Korean Heart Study. Menopause. 2016;23(1):60–6.

    Article  PubMed  Google Scholar 

  104. Kim HL, et al. Reproductive factors predicting angiographic obstructive coronary artery disease: the KoRean wOmen'S Chest Pain rEgistry (KoROSE). J Womens Health (Larchmt). 2016;25(5):443–8.

    Article  PubMed  Google Scholar 

  105. Guo L, et al. Age at menarche and prevention of hypertension through lifestyle in young Chinese adult women: result from project ELEFANT. BMC Womens Health. 2018;18(1):182.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ossewaarde ME, Bots M, Verbeek AL, et al. Age at menopause,cause-specific mortality and total life expectancy. Epidemiology. 2005;16(4):556–62.

    Article  PubMed  Google Scholar 

  107. Muka T, Williams C, Kunutsor S, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 2016;1(7):767–76.

    Article  PubMed  Google Scholar 

  108. Yang L, Lin L, Kartsonaki C, et al. Menopause characteristics, Total reproductive years, and risk of cardiovascular disease among Chinese women. Circ Cardiovasc Qual Outcomes. 2017;10(11):e004235.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Savonitto S, et al. Age at menopause, extent of coronary artery disease and outcome among postmenopausal women with acute coronary syndromes. Int J Cardiol. 2018;259:8–13.

    Article  PubMed  Google Scholar 

  110. Kim SH, Sim M, Park SB. Association between duration of reproductive lifespan and Framingham risk score in postmenopausal women. Maturitas. 2015;82(4):431–5.

    Article  PubMed  Google Scholar 

  111. Mansoor H, Elgendy I, Segal R, et al. Duration of reproductive years and the risk of cardiovascular and cerebrovascular events in older women: insights from the National Health and Nutrition Examination Survey. J Womens Health (Larchmt). 2018;26(10):1047–52.

    Article  Google Scholar 

  112. Bleil ME, Gregorich S, McConnell D, et al. Does accelerated reproductive aging underlie premenopausal risk for cardiovascular disease? Menopause. 2013;20(11):1139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  113. de Kat AC, Verschuren W, Eijkemans MJ, et al. The association of low ovarian reserve with cardiovascular disease risk: a cross-sectional population-based study. Hum Reprod. 2016;31(8):1866–74.

    Article  PubMed  Google Scholar 

  114. Tehrani FR, Erfani H, Cheraghi L, et al. Lipid profiles and ovarian reserve status: a longitudinal study. Hum Reprod. 2014;29(11):2522–9.

    Article  CAS  PubMed  Google Scholar 

  115. de Kat AC, Verschuren W, Eijkemans MJ, et al. Anti-mullerian hormone trajectories are associated with cardiovascular disease in women: results from the Doetinchem cohort study. Circulation. 2017;135(6):556–65.

    Article  PubMed  Google Scholar 

  116. Zhao D, Guallar E, Ouyang P, et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J Am Coll Cardiol. 2018;71(22):2555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Muka T, Oliver-Williams C, Colpani V, et al. Association of vasomotor and other menopausal symptoms with risk of cardiovascular disease: a systematic review and meta-analysis. PLoS One. 2016;11(6):e0157417.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gast GC, et al. Menopausal complaints are associated with cardiovascular risk factors. Hypertension. 2008;51(6):1492–8.

    Article  CAS  PubMed  Google Scholar 

  119. Gast GC, et al. Vasomotor menopausal symptoms are associated with increased risk of coronary heart disease. Menopause. 2011;18(2):146–51.

    Article  PubMed  Google Scholar 

  120. Szmuilowicz ED, et al. Vasomotor symptoms and cardiovascular events in postmenopausal women. Menopause. 2011;18(6):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Herber-Gast G, Brown WJ, Mishra GD. Hot flushes and night sweats are associated with coronary heart disease risk in midlife: a longitudinal study. BJOG. 2015;122(11):1560–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, T. et al. (2023). Evaluation and Early Warning Systems of Ovarian Aging. In: Wang, S. (eds) Ovarian Aging. Springer, Singapore. https://doi.org/10.1007/978-981-19-8848-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8848-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8847-9

  • Online ISBN: 978-981-19-8848-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics