Skip to main content

Applications of Remote Sensing for Air Pollution Monitoring in Thailand: An Early Warning for Public Health

  • Chapter
  • First Online:
Earth Data Analytics for Planetary Health

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 420 Accesses

Abstract

There are also consistent findings on the adverse effects of air pollution on public health in Thailand. Small size particulate matter, or PM2.5, is the most pronounced air pollutant during the haze crisis. PM2.5 often comes along with other polluted gases, including carbon monoxide (CO), oxides of nitrogen (NOx = NO + NO2), sulfur dioxide (SO2), ozone (O3), and volatile organic compounds (VOCs). This chapter presents various applications of remote sensing technology for air pollution monitoring, warning, and forecasting. These applications can help assess human exposure to air pollution and determine health risks associated with air pollution. The presentation is divided into four sections. The first section provides an overview of Earth Observing Satellites and current remote sensing technology for air pollution observations. The second section is on assessing the magnitude of atmospheric pollutants and human exposure levels from remote sensing. The third section is on air pollution source identification using remote sensing technology. Finally, the fourth section discusses the possibility of employing satellite information for forecasting haze episodes as the early warning tool. The presentation is based on the recent deployment of remote sensing technology for air pollution monitoring, especially reported for the cases of Thailand and the Southeast Asian region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinichka C, Makka N, Sukkumnoed D, Chariyalertsak S, Inchai P, Bundhamcharoen K (2017) Burden of disease attributed to ambient air pollution in Thailand: a GIS-based approach. PLoS ONE 12(12):e0189909

    Article  Google Scholar 

  2. Jenwitheesuk K, Peansukwech U, Jenwitheesuk K (2020) Accumulated ambient air pollution and colon cancer incidence in Thailand. Sci Rep 10(1):1–12

    Article  Google Scholar 

  3. Zhou X, Josey K, Kamareddine L, Caine MC, Liu T, Mickley LJ, Cooper M, Dominici F (2021) Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci Adv 7(33):eabi8789

    Google Scholar 

  4. Phosri A, Sihabut T, Jaikanlaya C (2020) Temporal variations of short-term effects of particulate matter on hospital admissions in the most densely populated city in Thailand. Sci Total Environ 742:140651

    Article  Google Scholar 

  5. Moran J, NaSuwan C, Poocharoen OO (2019) The haze problem in northern Thailand and policies to combat it: a review. Environ Sci Policy 97:1–15

    Article  Google Scholar 

  6. Tipayarat Y, Sajor EE (2012) State simplification, heterogeneous cause of vegetation fires and implication on local haze management: case study in Thailand. Environ Dev Sustain 14:1047–1064

    Article  Google Scholar 

  7. Wongwatcharapaiboon J (2020) Toward future particulate matter situations in Thailand from supporting policy, network and economy. Future Cities Environ 6(1)

    Google Scholar 

  8. Shi H, Wang Y, Chen J, Huisingh D (2016) Preventing smog crises in China and globally. J Clean Prod 112:1261–1271

    Article  Google Scholar 

  9. Liu Y, Jia R, Dai T, Xie Y, Shi G (2014) A review of aerosol optical properties and radiative effects. J Meteorol Res 28(6):1003–1028

    Article  Google Scholar 

  10. Ferrier C, Boschetti M, Fourcade J, Gamet P, Gamet P (2010) Exit the A-Train constellation: PARASOL and CALIPSO different strategies. In: SpaceOps 2010 conference delivering on the dream hosted by NASA marshall space flight center and organized by AIAA, p 2275

    Google Scholar 

  11. Murphy R (2014) OCO-2 takes the A-Train to study earth’s atmosphere. National Aeronautics and Space Administration. https://www.nasa.gov/jpl/oco2/a-train-atmosphere-20140703. Accessed on 17 October 2021

  12. Kawaguchi M, Yoshida T (2013) Regular observation by global change observation mission 1st-water GCOM-W1 (Shizuku). NEC Tech J 8(1):32–35

    Google Scholar 

  13. Schoeberl MR, Douglass AR, Hilsenrath E, Bhartia PK, Beer R, Waters JW, Gunson MR, Froidevaux L, Gille JC, Barnett JJ, Levelt PF (2006) Overview of the EOS Aura mission’. IEEE Trans Geosci Remote Sens 44(5):1066–1074

    Article  Google Scholar 

  14. Doll CN, Muller JP, Elvidge CD (2000) Nighttime imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio 157−162

    Google Scholar 

  15. Welton EJ, Voss KJ, Quinn PK, Flatau PJ, Markowicz K, Campbell JR, Spinhirne JD, Gordon HR, Johnson JE (2002) Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J Geophys Res Atmos 107(D19):INX2–18

    Google Scholar 

  16. OMI team (2012) Ozone monitoring instrument (OMI) data user’s guide. NASA, Washington DC

    Google Scholar 

  17. Jackson JM, Liu H, Laszlo I, Kondragunta S, Remer LA, Huang J, Huang HC (2013) Suomi-NPP VIIRS aerosol algorithms and data products. J Geophys Res Atmos 118(22):12–673

    Article  Google Scholar 

  18. Hsu NC, Lee J, Sayer AM, Kim W, Bettenhausen C, Tsay SC (2019) VIIRS Deep Blue aerosol products over land: extending the EOS long-term aerosol data records. J Geophys Res Atmos 124(7):4026–4053

    Article  Google Scholar 

  19. Sawyer V, Levy RC, Mattoo S, Cureton G, Shi Y, Remer LA (2020) Continuing the MODIS dark target aerosol time series with VIIRS. Remote Sens 12(2):308

    Article  Google Scholar 

  20. Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F (2004) Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 292(19):2372–2378

    Article  Google Scholar 

  21. Bell ML, Dominici F (2008) Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. Am J Epidemiol 167(8):986–997

    Article  Google Scholar 

  22. Lelieveld J, Barlas C, Giannadaki D, Pozzer AJACP (2013) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phy 13(14):7023–7037

    Article  Google Scholar 

  23. Amnuaylojaroen T, Macatangay RC, Khodmanee S (2019) Modeling the effect of VOCs from biomass burning emissions on ozone pollution in upper Southeast Asia. Heliyon 5(10):e02661

    Article  Google Scholar 

  24. Sonkaew T, Macatangay R (2015) Determining relationships and mechanisms between tropospheric ozone column concentrations and tropical biomass burning in Thailand and its surrounding regions. Environ Res Lett 10(6):065009

    Article  Google Scholar 

  25. Mekaumnuaychai T, Suranowarath K, Kanabkaew T, Lalitaporn P (2020) Observations of atmospheric carbon monoxide and formaldehyde in Thailand using satellites. EnvironmentAsia 13

    Google Scholar 

  26. Yimlamaid A, Suranowarath K, Kanabkaew T, Lalitaporn P (2020) Long-term assessment of daily atmospheric nitrogen dioxide in Thailand using satellite observed data. EnvironmentAsia 13

    Google Scholar 

  27. Buntoung S, Webb AR (2010) Comparison of erythemal UV irradiances from ozone monitoring instrument (OMI) and ground‐based data at four Thai stations. J Geophys Res Atmos 115(D18)

    Google Scholar 

  28. Lee J, Choi WJ, Kim DR, Kim SY, Song CK, Hong JS, Hong Y, Lee S (2013) The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements. Asia Pac J Atmos Sci 49(3):271–278

    Article  Google Scholar 

  29. Mehta M, Singh R, Singh A, Singh N (2016) Recent global aerosol optical depth variations and trends—a comparative study using MODIS and MISR level 3 datasets. Remote Sens Environ 181:137–150

    Article  Google Scholar 

  30. Hutchison KD, Smith S, Faruqui S (2004) The use of MODIS data and aerosol products for air quality prediction. Atmos Environ 38(30):5057–5070

    Article  Google Scholar 

  31. Wei J, Peng Y, Mahmood R, Sun L, Guo J (2019) Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products. Atmos Chem Phys 19(10):7183–7207

    Article  Google Scholar 

  32. Sukitpaneenit M, Oanh NTK (2014) Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand. Environ Monit Assess 186(4):2495–2504

    Article  Google Scholar 

  33. Kanabkaew T (2013) Prediction of hourly particulate matter concentrations in Chiangmai, Thailand using MODIS aerosol optical depth and ground-based meteorological data. EnvironmentAsia 6(2)

    Google Scholar 

  34. Sayer AM, Hsu NC, Hsiao TC, Pantina P, Kuo F, Ou-Yang CF, Holben BN, Janjai S, Chantara S., Wang SH, Loftus AM (2016) In-situ and remotely-sensed observations of biomass burning aerosols at Doi Ang Khang, Thailand during 7-SEAS/BASELInE 2015. Aerosol Air Qual Res 16(11):2786−2801

    Google Scholar 

  35. Nguyen TT, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, Bui HQ (2019) Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region. Environ Pollut 255:113106

    Article  Google Scholar 

  36. Cheewaphongphan P, Garivait S (2013) Bottom up approach to estimate air pollution of rice residue open burning in Thailand. Asia Pac J Atmos Sci 49(2):139–149

    Article  Google Scholar 

  37. Vongruang P, Pimonsree S (2020) Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmos Environ 228:117414

    Article  Google Scholar 

  38. Lalitaporn P, Boonmee T (2019) Analysis of tropospheric nitrogen dioxide using satellite and ground based data over Northern Thailand. Eng J 23(6):19–35

    Article  Google Scholar 

  39. Takemura T, Nakajima T, Dubovik O, Holben BN, Kinne S (2002) Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J Clim 15(4):333–352

    Article  Google Scholar 

  40. Wang J, Virkkula A, Gao Y, Lee S, Shen Y, Chi X, Nie W, Liu Q, Xu Z, Huang X, Wang T (2017) Observations of aerosol optical properties at a coastal site in Hong Kong, South China. Atmos Chem Phys 17(4):2653–2671

    Article  Google Scholar 

  41. Levoni C, Cervino M, Guzzi R, Torricella F (1997) Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes. Appl Opt 36(30):8031–8041

    Article  Google Scholar 

  42. Bridhikitti A, Overcamp TJ (2011) Optical characteristics of southeast Asia’s regional aerosols and their sources. J Air Waste Manag Assoc 61(7):747–754

    Article  Google Scholar 

  43. Park JU, Kim SW, Sheridan PJ, Williams A, Chambers SD (2020) Long-term variability of aerosol optical properties at Mauna Loa. Aerosol Air Qual Res 20(7):1700–1711

    Google Scholar 

  44. Reidmiller DR, Hobbs PV, Kahn R (2006) Aerosol optical properties and particle size distributions on the east coast of the United States derived from airborne in situ and remote sensing measurements. J Atmos Sci 63(3):785–814

    Article  Google Scholar 

  45. Bhaskar VV, Safai PD, Raju MP (2015) Long term characterization of aerosol optical properties: implications for radiative forcing over the desert region of Jodhpur, India. Atmos Environ 114:66–74

    Article  Google Scholar 

  46. Zhang M, Ma Y, Gong W, Liu B, Shi Y, Chen Z (2018) Aerosol optical properties and radiative effects: assessment of urban aerosols in central China using 10-year observations. Atmos Environ 182:275–285

    Article  Google Scholar 

  47. Kaskaoutis DG, Sinha PR, Vinoj V, Kosmopoulos PG, Tripathi SN, Misra A, Sharma M, Singh RP (2013) Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmos Environ 79:7–19

    Article  Google Scholar 

  48. Tiwari S, Pandithurai G, Attri SD, Srivastava AK, Soni VK, Bisht DS, Kumar VA, Srivastava MK (2015) Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmos Res 153:465–479

    Article  Google Scholar 

  49. Luoma K, Virkkula A, Aalto P, Petäjä T, Kulmala M (2019) Over a 10-year record of aerosol optical properties at SMEAR II. Atmos Chem Phys 19(17):11363–11382

    Article  Google Scholar 

  50. Wang T, Du Z, Tan T, Xu N, Hu M, Hu J, Guo S (2019) Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013–2017. Atmos Environ 206:293–302

    Article  Google Scholar 

  51. Chand D, Guyon P, Artaxo P, Schmid O, Frank GP, Rizzo LV, Mayol-Bracero OL, Gatti LV, Andreae MO (2006) Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season. Atmos Chem Phys 6(10):2911–2925

    Article  Google Scholar 

  52. Li C, Tsay SC, Hsu NC, Kim JY, Howell SG, Huebert BJ, Ji Q, Jeong MJ, Wang SH, Hansell RA, Bell SW (2013) Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA. Atmos Environ 78:60–71

    Article  Google Scholar 

  53. Gautam R, Hsu NC, Eck TF, Holben BN, Janjai S, Jantarach T, Tsay SC, Lau WK (2013) Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmos Environ 78:51–59

    Article  Google Scholar 

  54. Sayer AM, Hsu NC, Eck TF, Smirnov A, Holben BN (2014) AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmos Chem Phys 14(20):11493–11523

    Article  Google Scholar 

  55. Ebert M, Weinbruch S, Rausch A, Gorzawski G, Helas G, Hoffmann P, Wex H (2002) Complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles. J Geophys Res Atmos 107(D21):8121. https://doi.org/10.1029/2000JD000195

    Article  Google Scholar 

  56. Schkolnik G, Chand D, Hoffer A, Andreae MO, Erlick C, Swietlicki E, Rudich Y (2007) Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmos Environ 41(5):1107–1118

    Article  Google Scholar 

  57. Duc HN, Bang HQ, Quan NH, Quang NX (2021) Impact of biomass burnings in Southeast Asia on air quality and pollutant transport during the end of the 2019 dry season. Environ Monit Assess 193(9):1–28

    Article  Google Scholar 

  58. Kamthonkiat D, Thanyapraneedkul J, Nuengjumnong N, Ninsawat S, Unapumnuk K, Vu TT (2021) Identifying priority air pollution management areas during the burning season in Nan Province, Northern Thailand. Environ Dev Sustain 23(4):5865–5884

    Article  Google Scholar 

  59. Tsay SC, Hsu NC, Lau WKM, Li C, Gabriel PM, Ji Q, Holben BN, Welton EJ, Nguyen AX, Janjai S, Lin NH (2013) From BASE-ASIA toward 7-SEAS: a satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmos Environ 78:20–34

    Article  Google Scholar 

  60. UN Economic and Social Commission for Asia and the Pacific, UN ESCAP (2021) Deciphering the black box of air pollution data in Thailand. https://www.unescap.org/blog/deciphering-black-box-air-pollution-data-thailand. Accessed on 26 January 2021

  61. Huang K, Fu JS, Hsu NC, Gao Y, Dong X, Tsay SC, Lam YF (2013) Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos Environ 78:291–302

    Article  Google Scholar 

  62. Bridhikitti A (2013) Atmospheric aerosol layers over Bangkok Metropolitan Region from CALIPSO observations. Atmos Res 127:1–7

    Article  Google Scholar 

  63. Kanniah KD, Lim HQ, Kaskaoutis DG, Cracknell AP (2014) Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmos Res 138:223–239

    Article  Google Scholar 

  64. Liao Q, Zhu M, Wu L, Pan X, Tang X, Wang Z (2020) Deep learning for air quality forecasts: a review. Curr Pollut Rep 6(4):399–409

    Article  Google Scholar 

  65. Zhang H, Wang J, García LC, Ge C, Plessel T, Szykman J, Murphy B, Spero TL (2020) Improving surface PM2.5 forecasts in the United States using an ensemble of chemical transport model outputs: 1. bias correction with surface observations in nonrural areas. J Geophys Res Atmos 125(14):e2019JD032293

    Google Scholar 

  66. Werner M, Kryza M, Guzikowski J (2019) Can data assimilation of surface PM2.5 and Satellite AOD improve WRF-Chem forecasting? A case study for two scenarios of particulate air pollution episodes in Poland. Remote Sens 11(20):2364

    Google Scholar 

  67. Hollingsworth A, Engelen RJ, Textor C, Benedetti A, Boucher O, Chevallier F, Dethof A, Elbern H, Eskes H, Flemming J, Granier C (2008) Toward a monitoring and forecasting system for atmospheric composition: the GEMS project. Bull Am Meteorol Soc 89(8):1147–1164

    Article  Google Scholar 

  68. Sharma E, Deo RC, Soar J, Prasad R, Parisi AV, Raj N (2022) Novel hybrid deep learning model for satellite based PM10 forecasting in the most polluted Australian hotspots. Atmos Environ 279:119111

    Article  Google Scholar 

  69. Li C, Hsu NC, Tsay SC (2011) A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmos Environ 45(22):3663–3675

    Article  Google Scholar 

  70. SERVIR-Mekong (2021) Mekong air quality explorer. https://aqatmekong-servir.adpc.net/en/home/. Accessed on 22 August 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arika Bridhikitti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bridhikitti, A. (2023). Applications of Remote Sensing for Air Pollution Monitoring in Thailand: An Early Warning for Public Health. In: Wen, TH., Chuang, TW., Tipayamongkholgul, M. (eds) Earth Data Analytics for Planetary Health. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-19-8765-6_1

Download citation

Publish with us

Policies and ethics