Skip to main content

Abstract

Neurons are described as the core computational unit associated with intelligence of primates but very little is understood about the biological and physiochemical processes associated that results in their robust behavior. Numerous unique morphology of neurons are stacked with either precise connectivity in some regions, whereas significantly dissimilar connectome specificity in others, shaping cognitive behavior that is yet to be unraveled. In this proposed work, parasol RGC layers with moderate receptive fields connected to ON bipolar cell in the primary region projecting onto magnocellular region and orientation selectivity in magnocellular region have been explored. Result suggests segmentation type behavior due to connectivity with ON bipolar cells in the striate cortex of primary visual cortex whereas boundary estimation type behavior due to orientation selectivity in the V2 region of primary visual cortex.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleci C, Belcastro E (2016) Parallel convergences: a glimpse to the magno-and parvocellular pathways in visual perception. World J Res Rev 3(3):34–42

    Google Scholar 

  2. Antinucci P, Hindges R (2018) Orientation-selective retinal circuits in vertebrates. Front Neural Circ 12:11

    Article  Google Scholar 

  3. Barlow HB (1982) David Hubel and Torsten Wiesel: their contributions towards understanding the primary visual cortex. Trends Neurosci 5:145–152

    Article  Google Scholar 

  4. Baruah SMB, Gogoi P, Roy S (2019) From cable equation to active and passive nerve membrane model. In: 2019 second international conference on advanced computational and communication paradigms (ICACCP). IEEE, pp 1–5

    Google Scholar 

  5. Baruah SMB, Nandi D, Roy S (2019) Modelling signal transmission in passive dendritic fibre using discretized cable equation. In: 2019 2nd international conference on innovations in electronics, signal processing and communication (IESC). IEEE, pp 138–141

    Google Scholar 

  6. Baruah SMB, Nandi D, Gogoi P, Roy S (2021) Primate vision: a single layer perception. Neural Comput Appl 33(18):11765–11775

    Article  Google Scholar 

  7. Bertasius G, Shi J, Torresani L (2015) Deepedge: a multi-scale bifurcated deep network for top-down contour detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4380–4389

    Google Scholar 

  8. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337):183–188

    Article  Google Scholar 

  9. Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566(1):13–19

    Article  Google Scholar 

  10. Cooler S, Schwartz GW (2021) An offset on-off receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 24(1):105–115

    Article  Google Scholar 

  11. Dacey DM, Brace S (1992) A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neurosci 9(3–4):279–290

    Article  Google Scholar 

  12. Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD (2018) Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron 98(3):602–615

    Article  Google Scholar 

  13. Dollár P. Piotr’s computer vision Matlab toolbox (PMT). https://github.com/pdollar/toolbox

  14. Dollár P, Zitnick CL (2014) Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach Intell 37(8):1558–1570

    Article  Google Scholar 

  15. Edwards M, Goodhew SC, Badcock DR (2021) Using perceptual tasks to selectively measure magnocellular and parvocellular performance: Rationale and a user’s guide. Psychonom Bull Rev 28(4):1029–1050

    Article  Google Scholar 

  16. Garg AK, Li P, Rashid MS, Callaway EM (2019) Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science 364(6447):1275–1279

    Article  Google Scholar 

  17. Garg AK, Li P, Rashid MS, Callaway EM (2019) Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science 364(6447):1275–1279

    Article  Google Scholar 

  18. Gauthier JL, Field GD, Sher A, Greschner M, Shlens J, Litke AM, Chichilnisky E (2009) Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biol 7(4):e1000063

    Article  Google Scholar 

  19. Gauthier JL, Field GD, Sher A, Shlens J, Greschner M, Litke AM, Chichilnisky E (2009) Uniform signal redundancy of parasol and midget ganglion cells in primate retina. J Neurosci 29(14):4675–4680

    Article  Google Scholar 

  20. Guo T, Tsai D, Morley JW, Suaning GJ, Kameneva T, Lovell NH, Dokos S (2016) Electrical activity of on and off retinal ganglion cells: a modelling study. J Neural Eng 13(2):025005

    Article  Google Scholar 

  21. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  22. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press

    Google Scholar 

  23. Kling A, Gogliettino AR, Shah NP, Wu EG, Brackbill N, Sher A, Litke AM, Silva RA, Chichilnisky E (2020) Functional organization of midget and parasol ganglion cells in the human retina. BioRxiv

    Google Scholar 

  24. Koch C, Segev I (2000) The role of single neurons in information processing. Nat Neurosci 3(11):1171–1177

    Article  Google Scholar 

  25. Liu Y, Cheng MM, Hu X, Bian JW, Zhang L, Bai X, Tang J (2019) Richer convolutional features for edge detection. IEEE Trans Pattern Anal Mach Intell 41(8):1939–1946. https://doi.org/10.1109/TPAMI.2018.2878849

    Article  Google Scholar 

  26. Manookin MB, Patterson SS, Linehan CM (2018) Neural mechanisms mediating motion sensitivity in parasol ganglion cells of the primate retina. Neuron 97(6):1327–1340

    Article  Google Scholar 

  27. Mély DA, Kim J, McGill M, Guo Y, Serre T (2016) A systematic comparison between visual cues for boundary detection. Vision Res 120:93–107

    Article  Google Scholar 

  28. Nelson R, Kolb H (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res 23(10):1183–1195

    Article  Google Scholar 

  29. Nusser Z (2012) Differential subcellular distribution of ion channels and the diversity of neuronal function. Curr Opin Neurobiol 22(3):366–371

    Article  Google Scholar 

  30. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  Google Scholar 

  31. Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking and plasticity. Trends Neurosci 33(7):307–316

    Article  Google Scholar 

  32. Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3982–3991

    Google Scholar 

  33. Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ, Couch SM, Custer P, Morgan JL, Kerschensteiner D (2020) Efficient coding by midget and parasol ganglion cells in the human retina. Neuron 107(4):656–666

    Article  Google Scholar 

  34. Troncoso XG, Macknik SL, Martinez-Conde S (2011) Vision’s first steps: anatomy, physiology, and perception in the retina, lateral geniculate nucleus, and early visual cortical areas. In: Visual Prosthetics, pp 23–57

    Google Scholar 

  35. Wang W, Zhou T, Zhuo Y, Chen L, Huang Y (2020) Subcortical magnocellular visual system facilities object recognition by processing topological property. BioRxiv

    Google Scholar 

  36. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403

    Google Scholar 

  37. Yang J, Price B, Cohen S, Lee H, Yang MH (2016) Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 193–202

    Google Scholar 

  38. Zhao Y, Li J, Zhang Y, Song Y, Tian Y (2021) Ordinal multi-task part segmentation with recurrent prior generation. IEEE Trans Pattern Anal Mach Intell 43(5):1636–1648. https://doi.org/10.1109/TPAMI.2019.2953854

    Article  Google Scholar 

Download references

Acknowledgment

This publication is an outcome of the R &D work undertaken project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Zafar Laskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baruah, S.M.B., Laskar, A.Z., Roy, S. (2023). Scene Segmentation and Boundary Estimation in Primary Visual Cortex. In: Yadav, R.P., Nanda, S.J., Rana, P.S., Lim, MH. (eds) Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-8742-7_16

Download citation

Publish with us

Policies and ethics