Skip to main content

Transdermal Injection with Microneedle Devices in Healthcare Sector: Materials, Challenging Fabrication Methodologies, and its Limitations

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 989))

  • 362 Accesses

Abstract

In recent years, the management of many health disorders takes place at home either by community nurses or by patients independently. However, the medication management inside domestic healthcare situations may be difficult, mainly while therapy is administered via injection. The large percentage of transcutaneous injuries during needle handling has become a hazard in healthcare settings. The proper incineration of needle waste disposal after treatment is a major concern in the medical field. The cost-effective, biocompatible, portable, microfluidic devices are a promising technology for monitoring and diagnosing health conditions. One of the microfluidic device systems is a Microneedle (MN), which is an alternative method of an oral and conventional hypodermic needle for biomedical applications. The development of microminiaturized needles with scale dimensions in the order of 1 mm or less with a biocompatible material is a challenging aspect of today’s scenario. Microneedle-based devices are customized for a wide range of applications, including disease detection, drug delivery mechanisms, and metabolic pathway monitoring. The different types of microneedles are developed based on the applications and their fabrication methodologies are selected based on the material and geometrical structure. Numerous fabrication processes of these microneedle devices from small-scale to large-scale production, with regulatory approval for commercialization, is a challenging perspective. This chapter mainly focuses on the various types of microneedles and the selection of materials for the microneedle type, the benefits of microneedle technology in various health sectors, along with a critical assessment of its possible impact on healthcare being investigated and discussed. It also elaborates on the different challenging microfabrication technologies and their limitations for various types of microneedle devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung JH, Jin SG (2021) Microneedle for transdermal drug delivery: current trends and fabrication. J Pharmaceut Invest 51(5):503–517. https://doi.org/10.1007/s40005-021-00512-4

  2. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268. https://doi.org/10.1038/nbt.1504

    Article  Google Scholar 

  3. Waghule T, et al (2019) Microneedles: a smart approach and increasing potential for transdermal drug delivery system. In: Biomedicine and pharmacotherapy, vol. 109. Elsevier, Masson, SAS, pp 1249–1258. https://doi.org/10.1016/j.biopha.2018.10.078

  4. Donnelly RF, Raj Singh TR, Woolfson AD (2010) Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv 17(4):187–207. https://doi.org/10.3109/10717541003667798

  5. Ng LC, Gupta M (2020) Transdermal drug delivery systems in diabetes management: a review. Asian J Pharmaceut Sci 15(1):13–25. Shenyang Pharmaceutical University. https://doi.org/10.1016/j.ajps.2019.04.006

  6. Sahoo D, et al (2021) Oral drug delivery of nanomedicine. In: Theory and applications of nonparenteral nanomedicines. Elsevier, pp 181–207. https://doi.org/10.1016/b978-0-12-820466-5.00009-0

  7. Alkilani AZ, McCrudden MTC, Donnelly RF (2015) Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470. MDPI AG. https://doi.org/10.3390/pharmaceutics7040438

  8. Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF (2022) Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 12(4):758–791. https://doi.org/10.1007/s13346-021-00909-6

    Article  Google Scholar 

  9. Parhi R (2018) Nanocomposite for transdermal drug delivery. In: Applications of nanocomposite materials in drug delivery. Elsevier, pp 353–389. https://doi.org/10.1016/B978-0-12-813741-3.00016-9

  10. Sengar V, Jyoti K, Jain UK, Katare OP, Chandra R, Madan J (2018) Lipid nanoparticles for topical and transdermal delivery of pharmaceuticals and cosmeceuticals: a glorious victory. In: Lipid nanocarriers for drug targeting. Elsevier, pp 413–436. https://doi.org/10.1016/B978-0-12-813687-4.00010-4

  11. Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF (2022) The role of 3D printing technology in microengineering of microneedles. Small 18(18). John Wiley and Sons Inc. https://doi.org/10.1002/smll.202106392

  12. Bajaj S, Whiteman A, Brandner B (2011) Transdermal drug delivery in pain management. Contin Educ Anaesth Crit Care Pain 11(2):39–43. https://doi.org/10.1093/bjaceaccp/mkq054

    Article  Google Scholar 

  13. Ita K (2015) Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 7(3):90–105. https://doi.org/10.3390/pharmaceutics7030090

    Article  Google Scholar 

  14. McConville A, Hegarty C, Davis J (2018) Mini-review: assessing the potential impact of microneedle technologies on home healthcare applications. Medicines 5(2):50. https://doi.org/10.3390/medicines5020050

    Article  Google Scholar 

  15. Sharma DM (2017) Microneedles: an approach in transdermal drug delivery: a Review Review on Moisture activated Dry Granulation Process View project an updated review on medicated gum as a potential tool for novel drug delivery system view project. https://doi.org/10.29161/PT.v6.i1.2017.7

  16. Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Micromachined needles for the transdermal delivery of drugs. In: Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp 494–498. https://doi.org/10.1109/memsys.1998.659807

  17. Lin L, Pisano AP (1999) Silicon-processed microneedles. J Microelectromech Syst 8(1):78–84. https://doi.org/10.1109/84.749406

    Article  Google Scholar 

  18. Chandrasekaran S, Brazzle JD, Frazier AB (2003) Surface micromachined metallic microneedles. J Microelectromech Syst 12(3):281–288. https://doi.org/10.1109/JMEMS.2003.809951

    Article  Google Scholar 

  19. Davis SP, Martanto W, Allen MG, Prausnitz MR (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52(5):909–915. https://doi.org/10.1109/TBME.2005.845240

    Article  Google Scholar 

  20. Moon SJ, Lee SS, Lee HS, Kwon TH (2005) Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol 11(4–5):311–318. https://doi.org/10.1007/s00542-004-0446-8

    Article  Google Scholar 

  21. Park JH, Yoon YK, Choi SO, Prausnitz MR, Allen MG (2007) Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng 54(5):903–913. https://doi.org/10.1109/TBME.2006.889173

    Article  Google Scholar 

  22. Gassend BLP, Velásquez-García LF, Akinwande AI (2010) Design and fabrication of DRIE-patterned complex needlelike silicon structures. J Microelectromech Syst 19(3):589–598. https://doi.org/10.1109/JMEMS.2010.2042680

    Article  Google Scholar 

  23. Wang PC, Paik SJ, Chen S, Rajaraman S, Kim SH, Allen MG (2013) Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J Microelectromech Syst 22(5):1041–1053. https://doi.org/10.1109/JMEMS.2013.2262587

    Article  Google Scholar 

  24. Kim JD, Kim M, Yang H, Lee K, Jung H (2013) Droplet-born air blowing: Novel dissolving microneedle fabrication. J Control Release 170(3):430–436. https://doi.org/10.1016/j.jconrel.2013.05.026

    Article  Google Scholar 

  25. van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I (2015) Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res 5(4):397–406. https://doi.org/10.1007/s13346-015-0238-y

    Article  Google Scholar 

  26. Takahashi H, Heo YJ, Shimoyama I (2017) Scalable fabrication of PEGDA microneedles using UV exposure via a rotating prism. J Microelectromech Syst 26(5):990–992. https://doi.org/10.1109/JMEMS.2017.2740177

    Article  Google Scholar 

  27. Nagamine K, Kubota J, Kai H, Ono Y, Nishizawa M (2017) An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed Microdev 19(3). https://doi.org/10.1007/s10544-017-0207-y

  28. Ren L, Chen Z, Wang H, Dou Z, Liu B, Jiang L (2020) Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording. IEEE Trans Instrum Meas 69(10):8328–8334. https://doi.org/10.1109/TIM.2020.2990523

    Article  Google Scholar 

  29. Han D, et al (2020) 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater 30(11). https://doi.org/10.1002/adfm.201909197

  30. O’shea J, Prausnitz MR, Rouphael N (2021) Dissolvable microneedle patches to enable increased access to vaccines against SARS-CoV-2 and future pandemic outbreaks. https://doi.org/10.3390/vaccines

  31. Chang H et al (2021) Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 5(9):1008–1018. https://doi.org/10.1038/s41551-021-00720-1

    Article  Google Scholar 

  32. Sawon MA, Samad MF (2021) Design and optimization of a microneedle with skin insertion analysis for transdermal drug delivery applications. J Drug Deliv Sci Technol 63. https://doi.org/10.1016/j.jddst.2021.102477

  33. Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK (2019) Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C 103. Elsevier Ltd. https://doi.org/10.1016/j.msec.2019.05.002

  34. Wei-Ze L et al (2010) Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 389(1–2):122–129. https://doi.org/10.1016/j.ijpharm.2010.01.024

    Article  Google Scholar 

  35. Rajabi M, et al (2016) Flexible and stretchable microneedle patches with integrated rigid stainless steel microneedles for transdermal biointerfacing. PLoS One 11(12). https://doi.org/10.1371/journal.pone.0166330

  36. Aziz NA, Majlis BY (2006) Fabrication study of solid microneedles array using HNA. In: IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE, pp. 20–24. https://doi.org/10.1109/SMELEC.2006.381012

  37. Gill HS, Prausnitz MR, Coulter H Coated microneedles for transdermal delivery

    Google Scholar 

  38. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF (2016) Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Rep 104:1–32. Elsevier Ltd. https://doi.org/10.1016/j.mser.2016.03.001

  39. Vinayakumar KB, Hegde GM, Nayak MM, Dinesh NS, Rajanna K (2014) Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery. Microelectron Eng 128:12–18. https://doi.org/10.1016/j.mee.2014.05.039

    Article  Google Scholar 

  40. Vinayakumar KB, et al (2016) A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. J Micromech Microeng 26(6). https://doi.org/10.1088/0960-1317/26/6/065013

  41. Mcallister DV, et al (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. https://www.pnas.org/doi/10.1073/pnas.2331316100

  42. Iliescu FS, Iliescu FS, Dumitrescu-Ionescu D, Petrescu M, Iliescu C (2014) A review on transdermal drug delivery using microneedles: current research and perspective microfluidics view project advanced techniques and increasing performance in the early detection of SARS-CoV-2 virus view project a review on transdermal drug delivery using microneedles: current research and perspective. Ann Acad Roman Sci Ser Sci Technol Inform https://www.researchgate.net/publication/268221237

  43. Zhang P, Dalton C, Jullien GA (2009) Design and fabrication of MEMS-based microneedle arrays for medical applications. Microsyst Technol 15(7):1073–1082. https://doi.org/10.1007/s00542-009-0883-5

    Article  Google Scholar 

  44. Kim YC, Park JH, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568. https://doi.org/10.1016/j.addr.2012.04.005

    Article  Google Scholar 

  45. Tucak A, et al (2020) Microneedles: characteristics, materials, production methods and commercial development. Micromachines 11(11). MDPI AG. https://doi.org/10.3390/mi11110961

  46. Mansoor I, Hafeli UO, Stoeber B (2012) Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery. J Microelectromech Syst 21(1):44–52. https://doi.org/10.1109/JMEMS.2011.2174429

    Article  Google Scholar 

  47. Lin TH, Jiang JM (2019) Fabrication of a pyramidal micro-needle array structure using 3D micro-lens mask lithography. Microsyst Technol 25(12):4637–4643. https://doi.org/10.1007/s00542-019-04610-0

    Article  Google Scholar 

  48. Li Y, et al. (2019) Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst Nanoeng 5(1). https://doi.org/10.1038/s41378-019-0077-y

  49. Bolton CJW et al (2020) Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip 20(15):2788–2795. https://doi.org/10.1039/d0lc00567c

    Article  Google Scholar 

  50. Pradeep Narayanan S, Raghavan S (2017) Solid silicon microneedles for drug delivery applications. Int J Adv Manuf Technol 93(1–4):407–422. https://doi.org/10.1007/s00170-016-9698-6

  51. Silvestre SL et al (2020) Microneedle arrays of polyhydroxyalkanoate by laser-based micromolding technique. ACS Appl Bio Mater 3(9):5856–5864. https://doi.org/10.1021/acsabm.0c00570

    Article  Google Scholar 

  52. Evens T, et al (2021) Producing hollow polymer microneedles using laser ablated molds in an injection molding process. J Micro Nano-Manuf 9(3). https://doi.org/10.1115/1.4051456

  53. Norman JJ et al (2013) Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdev 15(2):203–210. https://doi.org/10.1007/s10544-012-9717-9

    Article  Google Scholar 

  54. Miller PR et al (2019) Fabrication of hollow metal microneedle arrays using a molding and electroplating method. MRS Adv 4(24):1417–1426. https://doi.org/10.1557/adv.2019.147

    Article  Google Scholar 

  55. Dardano P, Caliò A, di Palma V, Bevilacqua MF, di Matteo AD, Stefano L (2015) A photolithographic approach to polymeric microneedles array fabrication. Materials 8(12):8661–8673. https://doi.org/10.3390/ma8125484

    Article  Google Scholar 

  56. Kathuria H, Kang K, Cai J, Kang L (2020) Rapid microneedle fabrication by heating and photolithography. Int J Pharmaceut 575. https://doi.org/10.1016/j.ijpharm.2019.118992

  57. Lim SH et al (2021) High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release 329:907–918. https://doi.org/10.1016/j.jconrel.2020.10.021

    Article  Google Scholar 

  58. Caudill C, et al Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. https://doi.org/10.1073/pnas.2102595118/-/DCSupplemental

  59. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ (2018) Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 18(8):1223–1230. https://doi.org/10.1039/c8lc00098k

    Article  Google Scholar 

  60. Jang SJ, et al (2019) Microneedle patterning of 3D nonplanar surfaces on implantable medical devices using soft lithography. Micromachines 10(10). https://doi.org/10.3390/mi10100705

  61. Ami Y (2011) Formation of polymer microneedle arrays using soft lithography. J Micro/Nanolithogr MEMS MOEMS 10(1):011503. https://doi.org/10.1117/1.3553393

    Article  Google Scholar 

  62. McGrath MG et al (2014) Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm 86(2):200–211. https://doi.org/10.1016/j.ejpb.2013.04.023

    Article  Google Scholar 

  63. Kim MJ, Park SC, Choi SO (2017) Dual-nozzle spray deposition process for improving the stability of proteins in polymer microneedles. RSC Adv 7(87):55350–55359. https://doi.org/10.1039/c7ra10928h

    Article  Google Scholar 

  64. Wang PM, Cornwell M, Hill J, Prausnitz MR (2006) Precise microinjection into skin using hollow microneedles. J Investig Dermatol 126(5):1080–1087. https://doi.org/10.1038/sj.jid.5700150

    Article  Google Scholar 

  65. Römgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ (2014) Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater 40:397–405. https://doi.org/10.1016/j.jmbbm.2014.09.015

    Article  Google Scholar 

  66. Ellison TJ, Talbott GC, Henderson DR (2020) VaxiPatchTM, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: an application to influenza B/Colorado/06/2017. Vaccine 38(43):6839–6848. https://doi.org/10.1016/j.vaccine.2020.07.040

    Article  Google Scholar 

  67. Menon I, et al (2021) Microneedles: a new generation vaccine delivery system. Micromachines 12(4). MDPI AG. https://doi.org/10.3390/mi12040435

  68. Zaric M et al (2013) Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly- D, l -Lactide- Co -Glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7(3):2042–2055. https://doi.org/10.1021/nn304235j

    Article  Google Scholar 

  69. Yang D, et al (2021) Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 121:119–133. https://doi.org/10.1016/j.actbio.2020.12.004

  70. Bhatnagar S, Reddy Gadeela P, Thathireddy P, Vamsi Krishna Venuganti V (2019) Microneedle-based drug delivery: materials of construction. 2039. https://doi.org/10.1007/s12039-019-1666-xS

  71. Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J (2017) Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C 80:187–196. https://doi.org/10.1016/j.msec.2017.05.143

    Article  Google Scholar 

  72. Chang H, et al (2017) A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater 29(37). https://doi.org/10.1002/adma.201702243

  73. Xie X et al (2017) Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 11(1):395–406. https://doi.org/10.1021/acsnano.6b06104

    Article  Google Scholar 

  74. Hong JY et al (2018) Efficacy and safety of a novel, soluble microneedle patch for the improvement of facial wrinkle. J Cosmet Dermatol 17(2):235–241. https://doi.org/10.1111/jocd.12426

    Article  MathSciNet  Google Scholar 

  75. Kulkarni D et al (2022) Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics 14(5):1097. https://doi.org/10.3390/pharmaceutics14051097

    Article  Google Scholar 

  76. Hirobe S et al (2017) Clinical study of a retinoic acid-loaded microneedle patch for seborrheic keratosis or senile lentigo. Life Sci 168:24–27. https://doi.org/10.1016/j.lfs.2015.12.051

    Article  Google Scholar 

  77. Yang J, Liu X, Fu Y, Song Y (2019) Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharmaceut Sin B 9(3): 469–483. Chinese Academy of Medical Sciences. https://doi.org/10.1016/j.apsb.2019.03.007

  78. Mccrudden MTC, Mcalister E, Courtenay AJ, González-Vázquez P, Raj Singh TR, Donnelly RF (2015) Microneedle applications in improving skin appearance. Exp Dermatol 24(8):561–566. Blackwell Publishing Ltd. https://doi.org/10.1111/exd.12723

  79. Bariya SH, Gohel MC, Mehta TA, Sharma OP (2012) Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 64(1):11–29. https://doi.org/10.1111/j.2042-7158.2011.01369.x

    Article  Google Scholar 

  80. Godin B, Touitou E (2007) Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 59(11):1152–1161. https://doi.org/10.1016/j.addr.2007.07.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gowthami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gowthami, A., Sreeja, B.S., Radha, S. (2023). Transdermal Injection with Microneedle Devices in Healthcare Sector: Materials, Challenging Fabrication Methodologies, and its Limitations. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_9

Download citation

Publish with us

Policies and ethics