Skip to main content

Lab-On-Chip Electrochemical Biosensor for Rheumatoid Arthritis

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 989))

  • 461 Accesses

Abstract

With the current prevalence rate of 0.5–1%, rheumatoid arthritis (RA) is the most common type of autoimmune arthritis. The chances of occurrence of this chronic multifactorial disease are more in females than males, significantly increasing with age (Crowson et al. in Arthritis Rheum 63:633–639, 2011;Eriksson et al. in Arthritis Care Res (Hoboken) 65:870–878, 2013; Smolen JS, Aletaha D, Barton A, et al. (2018) Rheumatoid arthritis. Nature Reviews Disease Primers 2018 4:1 4:1–23. 10.1038/nrdp.2018.1;Vollenhoven in BMC Med 7, 2009;). Rheumatoid arthritis primarily affects the lining of the synovial joints and can cause progressive disability, premature death, and socioeconomic burdens. Currently, there is no cure for RA. Hence the treatment strategy aims to speed up diagnosis and rapidly achieve a low disease activity state (LDAS) (Guo Q, Wang Y, Xu D, et al. (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Research 2018 6:1 6:1–14. 10.1038/s41413-018–0016-9). Presently, even though different techniques like ELISA (enzyme-linked immunosorbent assay), radioimmunoassay, fluorescence-based analysis, surface-enhanced Raman scattering, and chemiluminescence-based analysis are prevalent as reliable diagnostic tools for rheumatoid arthritis biomarker detection, they have their own shortcomings. The immediate need for rapid, accurate, cheap, and early diagnosis have urged scientists to develop new advanced technologies, of which biosensors are one of the most reliable platforms. This review discusses the clinical as well as pathophysiological features of rheumatoid arthritis along with the application of different electrochemical nanobiosensors for its rapid and early diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Mejías R, Carmona FD, Genre F et al (2019) Identification of a 3’-untranslated genetic variant of RARB associated with carotid intima-media thickness in rheumatoid arthritis: a genome-wide association study. Arthrit Rheumatol 71:351–360. https://doi.org/10.1002/ART.40734

    Article  Google Scholar 

  2. Ostrowska M, Maśliński W, Prochorec-Sobieszek M et al (2018) Cartilage and bone damage in rheumatoid arthritis. Reumatologia 56:111–120. https://doi.org/10.5114/REUM.2018.75523

    Article  Google Scholar 

  3. Smolen JS, Aletaha D, Barton A, et al (2018) Rheumatoid arthritis. Nat Rev Dis Prim 4(1):1–23. https://doi.org/10.1038/nrdp.2018.1

  4. Crowson CS, Matteson EL, Myasoedova E et al (2011) The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 63:633–639. https://doi.org/10.1002/ART.30155

    Article  Google Scholar 

  5. Eriksson JK, Neovius M, Ernestam S et al (2013) Incidence of rheumatoid arthritis in Sweden: a nationwide population-based assessment of incidence, its determinants, and treatment penetration. Arthritis Care Res (Hoboken) 65:870–878. https://doi.org/10.1002/ACR.21900

    Article  Google Scholar 

  6. Kumar B, Das MP, Misra AK (2017) A cross-sectional study of association of Rheumatoid arthritis with sero-positivity and anaemia in a tertiary care teaching hospital. J Med Res 3:280–283

    Article  Google Scholar 

  7. van Vollenhoven RF (2009) Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med 7. https://doi.org/10.1186/1741-7015-7-12

  8. Jirholt J, Lindqvist AKB, Holmdahl R (2001) The genetics of rheumatoid arthritis and the need for animal models to find and understand the underlying genes. Arthritis Res 3:87–97. https://doi.org/10.1186/AR145

    Article  Google Scholar 

  9. Barhamain AS, Magliah RF, Shaheen MH et al (2017) The journey of rheumatoid arthritis patients: a review of reported lag times from the onset of symptoms. Open Access Rheumatol 9:139. https://doi.org/10.2147/OARRR.S138830

    Article  Google Scholar 

  10. Sugiyama D, Nishimura K, Tamaki K et al (2010) Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis 69:70–81. https://doi.org/10.1136/ARD.2008.096487

    Article  Google Scholar 

  11. Guo Q, Wang Y, Xu D, et al (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6(1):1–14. https://doi.org/10.1038/s41413-018-0016-9

  12. Heidari B (2011) Rheumatoid Arthritis: early diagnosis and treatment outcomes. Caspian J Intern Med 2:161

    Google Scholar 

  13. Schneider M, Krüger K (2013) Rheumatoid Arthritis—early diagnosis and disease management. Dtsch Arztebl Int 110:477. https://doi.org/10.3238/ARZTEBL.2013.0477

    Article  Google Scholar 

  14. Gavrilă BI, Ciofu C, Stoica V (2016) Biomarkers in Rheumatoid Arthritis, what is new? J Med Life 9:144

    Google Scholar 

  15. Luime JJ, Colin EM, Hazes JMW, Lubberts E (2010) Does anti-mutated citrullinated vimentin have additional value as a serological marker in the diagnostic and prognostic investigation of patients with rheumatoid arthritis? A systematic review. Ann Rheum Dis 69:337–344. https://doi.org/10.1136/ARD.2008.103283

    Article  Google Scholar 

  16. Shi J, van Steenbergen HW, van Nies JAB, et al (2015) The specificity of anti-carbamylated protein antibodies for rheumatoid arthritis in a setting of early arthritis. Arthritis Res Ther 17. https://doi.org/10.1186/S13075-015-0860-6

  17. Maksymowych WP, Marotta A (2014) 14-3-3η: a novel biomarker platform for rheumatoid arthritis. Clin Exp Rheumatol 32:S35–S39

    Google Scholar 

  18. Maksymowych WP, Naides SJ, Bykerk V et al (2014) Serum 14–3-3η is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J Rheumatol 41:2104–2113. https://doi.org/10.3899/JRHEUM.131446

    Article  Google Scholar 

  19. Tishler M, Caspi D, Yaron M (1985) C-reactive protein levels in patients with rheumatoid arthritis: the impact of therapy. Clin Rheumatol 4:321–324. https://doi.org/10.1007/BF02031616

    Article  Google Scholar 

  20. Nielen MMJ, van Schaardenburg D, Reesink HW et al (2004) Increased levels of C-reactive protein in serum from blood donors before the onset of rheumatoid arthritis. Arthritis Rheum 50:2423–2427. https://doi.org/10.1002/ART.20431

    Article  Google Scholar 

  21. Otterness IG (1994) The value of C-reactive protein measurement in rheumatoid arthritis. Semin Arthritis Rheum 24:91–104. https://doi.org/10.1016/S0049-0172(05)80003-4

    Article  Google Scholar 

  22. Grassi W, de Angelis R, Lamanna G, Cervini C (1998) The clinical features of rheumatoid arthritis. Eur J Radiol 27(Suppl 1). https://doi.org/10.1016/S0720-048X(98)00038-2

  23. Farrant JM, O’Connor PJ, Grainger AJ (2007) Advanced imaging in rheumatoid arthritis. Part 1: synovitis. Skeletal Radiol 36:269–279. https://doi.org/10.1007/S00256-006-0219-9

    Article  Google Scholar 

  24. Devauchelle-Pensec V, Saraux A, Alapetite S et al (2002) Diagnostic value of radiographs of the hands and feet in early rheumatoid arthritis. Joint Bone Spine 69:434–441. https://doi.org/10.1016/S1297-319X(02)00427-X

    Article  Google Scholar 

  25. Graudal N (2004) The natural history and prognosis of rheumatoid arthritis: association of radiographic outcome with process variables, joint motion and immune proteins. Scand J Rheumatol Suppl 118:1–37. https://doi.org/10.1080/03009740310004847

    Article  Google Scholar 

  26. Rahmani M, Chegini H, Najafizadeh SR et al (2010) Detection of bone erosion in early rheumatoid arthritis: ultrasonography and conventional radiography versus non-contrast magnetic resonance imaging. Clin Rheumatol 29:883–891. https://doi.org/10.1007/S10067-010-1423-5

    Article  Google Scholar 

  27. Goupille P, Roulot B, Akoka S et al (2001) Magnetic resonance imaging: a valuable method for the detection of synovial inflammation in rheumatoid arthritis. J Rheumatol 28:35–40

    Google Scholar 

  28. van Venrooij WJ, Zendman AJW, Pruijn GJM (2006) Autoantibodies to citrullinated antigens in (early) rheumatoid arthritis. Autoimmun Rev 6:37–41. https://doi.org/10.1016/J.AUTREV.2006.03.008

    Article  Google Scholar 

  29. Sebbag M, Moinard N, Auger I et al (2006) Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated proteins. Eur J Immunol 36:2250–2263. https://doi.org/10.1002/EJI.200535790

    Article  Google Scholar 

  30. vander Cruyssen B, Cantaert T, Nogueira L, et al (2006) Diagnostic value of anti-human citrullinated fibrinogen ELISA and comparison with four other anti-citrullinated protein assays. Arthritis Res Ther 8:R122. https://doi.org/10.1186/AR2011

  31. Cinquanta L, Fontana DE, Bizzaro N (2017) Chemiluminescent immunoassay technology: what does it change in autoantibody detection? Autoimmun Highlights 8:1–8. https://doi.org/10.1007/S13317-017-0097-2/FIGURES/1

    Article  Google Scholar 

  32. Imas JJ, Zamarreño CR, Zubiate P et al (2020) Optical biosensors for the detection of rheumatoid arthritis (RA) biomarkers: a comprehensive review. Sensors (Basel) 20:1–51. https://doi.org/10.3390/S20216289

    Article  Google Scholar 

  33. Selvam SP, Chinnadayyala SR, Cho S (2021) Electrochemical nanobiosensor for early detection of rheumatoid arthritis biomarker: anti- cyclic citrullinated peptide antibodies based on polyaniline (PANI)/MoS2-modified screen-printed electrode with PANI-Au nanomatrix-based signal amplification. Sens Actuat B Chem 333. https://doi.org/10.1016/J.SNB.2021.129570

  34. Chen XH (1991) Detection of C-reactive protein in patients with epidemic cerebrospinal meningitis by solid phase radioimmunoassay. Zhonghua Liu Xing Bing Xue Za Zhi 12:44–46

    Google Scholar 

  35. Goldsmith SJ (1975) Radioimmunoassay: review of basic principles. Semin Nucl Med 5:125–152. https://doi.org/10.1016/S0001-2998(75)80028-6

    Article  Google Scholar 

  36. Chon H, Lee S, Wang R et al (2014) SERS-based immunoassay of anti-cyclic citrullinated peptide for early diagnosis of rheumatoid arthritis. RSC Adv 4:32924–32927. https://doi.org/10.1039/C4RA05149A

    Article  Google Scholar 

  37. Chon H, Wang R, Lee S, et al (2015) Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis. Anal Bioanal Chem 407. https://doi.org/10.1007/S00216-015-9020-8

  38. Benjamin O, Bansal P, Goyal A, Lappin SL (2021) Disease modifying anti-rheumatic drugs (DMARD). StatPearls

    Google Scholar 

  39. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131. https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  Google Scholar 

  40. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60:1–8. https://doi.org/10.1042/EBC20150001

    Article  Google Scholar 

  41. Mobed A, Sepehri Shafigh E (2021) Biosensors promising bio-device for pandemic screening “COVID-19“. Microchem J 164. https://doi.org/10.1016/J.MICROC.2021.106094

  42. Dutta G, Regoutz A, Moschou D (2020) Enzyme-assisted glucose quantification for a painless Lab-on-PCB patch implementation. Biosens Bioelectron 167. https://doi.org/10.1016/J.BIOS.2020.112484

  43. Park S, Kim J, Ock H et al (2015) Sensitive electrochemical detection of vaccinia virus in a solution containing a high concentration of L-ascorbic acid. Analyst 140:5481–5487. https://doi.org/10.1039/C5AN01086A

    Article  Google Scholar 

  44. Nguyen T, Bang DD, Wolff A (2020) 2019 novel Coronavirus Disease (COVID-19): Paving the road for rapid detection and point-of-care diagnostics. Micromachines (Basel) 11:1–7. https://doi.org/10.3390/MI11030306

    Article  Google Scholar 

  45. Chen X, Wang Y, Zhou J et al (2008) Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem 80:2133–2140. https://doi.org/10.1021/AC7021376

    Article  Google Scholar 

  46. Kailashiya J, Singh N, Singh SK et al (2015) Graphene oxide-based biosensor for detection of platelet-derived microparticles: a potential tool for thrombus risk identification. Biosens Bioelectron 65:274–280. https://doi.org/10.1016/J.BIOS.2014.10.056

    Article  Google Scholar 

  47. Pividori MI, Alegret S (2010) Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim Acta 170:227–242. https://doi.org/10.1007/S00604-010-0347-8

    Article  Google Scholar 

  48. Hussain KK, Malavia D, Johnson EM et al (2020) Biosensors and diagnostics for fungal detection. J Fungi (Basel) 6:1–26. https://doi.org/10.3390/JOF6040349

    Article  Google Scholar 

  49. Singh P, Pandey SK, Singh J et al (2016) Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett 8:193–203. https://doi.org/10.1007/S40820-015-0077-X/TABLES/2

    Article  Google Scholar 

  50. Cosnier S (2014) Electrochemical biosensors. Electrochem Biosens 1–398. https://doi.org/10.1081/e-eafe2-120051918

  51. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100. https://doi.org/10.1042/EBC20150010

    Article  Google Scholar 

  52. Chen C, Wang J (2020) Optical biosensors: an exhaustive and comprehensive review. Analyst 145:1605–1628. https://doi.org/10.1039/C9AN01998G

    Article  Google Scholar 

  53. Chorsi MT, Curry EJ, Chorsi HT et al (2019) Piezoelectric biomaterials for sensors and actuators. Adv Mater 31:1802084. https://doi.org/10.1002/ADMA.201802084

    Article  Google Scholar 

  54. Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11. https://doi.org/10.3390/MA11030448

  55. Kopparthy VL, Tangutooru SM, Guilbeau EJ (2015) Label free detection of L-glutamate using microfluidic based thermal biosensor. Bioengineering 2:2. https://doi.org/10.3390/BIOENGINEERING2010002

    Article  Google Scholar 

  56. Wang J (1999) Sol–gel materials for electrochemical biosensors. Anal Chim Acta 399:21–27. https://doi.org/10.1016/S0003-2670(99)00572-3

    Article  Google Scholar 

  57. Kimmel DW, Leblanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707. https://doi.org/10.1021/AC202878Q

    Article  Google Scholar 

  58. Babuin L, Vasile VC, Rio Perez JA et al (2008) Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit Care Med 36:759–765. https://doi.org/10.1097/CCM.0B013E318164E2E4

    Article  Google Scholar 

  59. Kumar A, Mazinder Boruah B, Liang XJ (2011) Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater https://doi.org/10.1155/2011/202187

  60. Pan Y, Sonn GA, Sin MLY et al (2010) Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens Bioelectron 26:649–654. https://doi.org/10.1016/J.BIOS.2010.07.002

    Article  Google Scholar 

  61. Tang D, Yuan R, Chai Y et al (2005) New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2’-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. Biosens Bioelectron 21:539–548. https://doi.org/10.1016/J.BIOS.2004.11.024

    Article  Google Scholar 

  62. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892. https://doi.org/10.1016/J.BIOS.2005.10.027

    Article  Google Scholar 

  63. Zani A, Laschi S, Mascini M, Marrazza G (2011) A new electrochemical multiplexed assay for PSA cancer marker detection. Electroanalysis 23:91–99. https://doi.org/10.1002/ELAN.201000486

    Article  Google Scholar 

  64. Cai X, Gao X, Wang L, et al (2013) A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sens Actuat B Chem Complete 575–583. https://doi.org/10.1016/J.SNB.2013.02.050

  65. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42:5944–5962. https://doi.org/10.1039/C3CS60077G

    Article  Google Scholar 

  66. Tang J, Wang Y, Li J et al (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2:6153–6157. https://doi.org/10.1039/C3TA14173J

    Article  Google Scholar 

  67. Veeramani MS, Shyam KP, Ratchagar NP et al (2014) Miniaturised silicon biosensors for the detection of triglyceride in blood serum. Anal Methods 6:1728–1735. https://doi.org/10.1039/C3AY42274G

    Article  Google Scholar 

  68. Eggins B (2007) Chemical sensors and biosensors. Chem Sens Biosens 1–273. https://doi.org/10.1002/9780470511305

  69. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors–principles and applications to clinical chemistry. Clin Chim Acta 314:1–26. https://doi.org/10.1016/S0009-8981(01)00629-5

    Article  Google Scholar 

  70. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441–456. https://doi.org/10.1016/S0956-5663(01)00313-X

    Article  Google Scholar 

  71. Bakker E, Pretsch E (2005) Potentiometric sensors for trace-level analysis. Trends Analyt Chem 24:199. https://doi.org/10.1016/J.TRAC.2005.01.003

    Article  Google Scholar 

  72. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69. https://doi.org/10.1016/S0009-8981(03)00241-9

    Article  Google Scholar 

  73. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors–sensor principles and architectures. Sensors (Basel) 8:1400. https://doi.org/10.3390/S80314000

    Article  Google Scholar 

  74. Huang X, Zhu Y, Kianfar E (2021) Nano biosensors: properties, applications and electrochemical techniques. J Market Res 12:1649–1672. https://doi.org/10.1016/J.JMRT.2021.03.048

    Article  Google Scholar 

  75. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947. https://doi.org/10.1002/ELAN.200390114

    Article  Google Scholar 

  76. Patolsky F, Zayats M, Katz E, Willner I (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal Chem 71:3171–3180. https://doi.org/10.1021/AC9901541

    Article  Google Scholar 

  77. Tlili A, Abdelghani A, Ameur S, Jaffrezic-Renault N (2006) Impedance spectroscopy and affinity measurement of specific antibody–antigen interaction. Mater Sci Eng C 2–3:546–550. https://doi.org/10.1016/J.MSEC.2005.10.007

    Article  Google Scholar 

  78. Wang H, Li S, Si Y et al (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6:8107–8116. https://doi.org/10.1039/C4NR00983E

    Article  Google Scholar 

  79. Yang GH, Zhou YH, Wu JJ et al (2013) Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv 3:22597–22604. https://doi.org/10.1039/C3RA44284E

    Article  Google Scholar 

  80. Auría-Soro C, Nesma T, Juanes-Velasco P, et al (2019) Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 9. https://doi.org/10.3390/NANO9101365

  81. Miao Y, Ouyang L, Zhou S et al (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439. https://doi.org/10.1016/J.BIOS.2013.10.008

    Article  Google Scholar 

  82. Wang X, Wang J, Sun X et al (2018) Hierarchical coral-like NiMOS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res 11:988–996. https://doi.org/10.1007/S12274-017-1711-3

    Article  Google Scholar 

  83. Chen X, Wu G, Cai Z, et al (2013) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchimica Acta 181(7):689–705. https://doi.org/10.1007/S00604-013-1098-0

  84. Rajapaksha RDAA, Hashim U, Gopinath SCB, et al (2021) Nanoparticles in electrochemical bioanalytical analysis. Nanopart Analyt Med Dev 83–112. https://doi.org/10.1016/B978-0-12-821163-2.00006-6

  85. Pruijn GJM, Wiik A, van Venrooij WJ (2010) The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis. Arthritis Res Ther 12:1–8. https://doi.org/10.1186/AR2903/TABLES/3

    Article  Google Scholar 

  86. Verpoort KN, Jol-Van Der Zijde CM, Papendrecht-Van Der Voort EAM et al (2006) Isotype distribution of anti-cyclic citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum 54:3799–3808. https://doi.org/10.1002/ART.22279

    Article  Google Scholar 

  87. de Gracia VM, Jiménez-Jorquera C, Haro I et al (2011) Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for rheumatoid arthritis. Biosens Bioelectron 27:113–118. https://doi.org/10.1016/J.BIOS.2011.06.026

    Article  Google Scholar 

  88. Ma J, Li D, Sun B et al (2022) Label-free electrochemical immunosensor for sensitive detection of Rheumatoid Arthritis biomarker Anti-CCP-ab. Electroanalysis 34:761–771. https://doi.org/10.1002/ELAN.202100045

    Article  Google Scholar 

  89. Zhao Y, Liu Y, Li X et al (2018) Label-free ECL immunosensor for the early diagnosis of rheumatoid arthritis based on asymmetric heterogeneous polyaniline-gold nanomaterial. Sens Actuat B Chem 257:354–361. https://doi.org/10.1016/J.SNB.2017.10.184

    Article  Google Scholar 

  90. Ma Y, Yang J, Yang T et al (2020) Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv 10:9723–9729. https://doi.org/10.1039/C9RA10386D

    Article  Google Scholar 

  91. Tang Q, Zhang L, Tan X et al (2019) Bioinspired synthesis of organic–inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay. Biosens Bioelectron 133:94–99. https://doi.org/10.1016/J.BIOS.2019.03.032

    Article  Google Scholar 

  92. Zhang X, Hu R, Zhang K et al (2016) An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer. Anal Methods 8:6202–6207. https://doi.org/10.1039/C6AY01464J

    Article  Google Scholar 

  93. Chen Q, Liu Z, Luo D et al (2019) Ultrasensitive fluorescent aptasensor for CRP detection based on the RNase H assisted DNA recycling signal amplification strategy. RSC Adv 9:11960–11967. https://doi.org/10.1039/C9RA01352K

    Article  Google Scholar 

  94. Zubiate P, Zamarreño CR, Sánchez P et al (2017) High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens Bioelectron 93:176–181. https://doi.org/10.1016/J.BIOS.2016.09.020

    Article  Google Scholar 

  95. Vashist SK, Schneider EM, Luong JHT (2015) Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst 140:4445–4452. https://doi.org/10.1039/C5AN00690B

    Article  Google Scholar 

  96. Guerrero S, Sánchez-Tirado E, Martínez-García G et al (2020) Electrochemical biosensor for the simultaneous determination of rheumatoid factor and anti-cyclic citrullinated peptide antibodies in human serum. Analyst 145:4680–4687. https://doi.org/10.1039/D0AN00481B

    Article  Google Scholar 

  97. Singh B, Datta B, Ashish A, Dutta G (2021) A comprehensive review on current COVID-19 detection methods: from lab care to point of care diagnosis. Sens Int 2:100119. https://doi.org/10.1016/J.SINTL.2021.100119

    Article  Google Scholar 

  98. Dutta G, Lillehoj PB (2018) Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Sci Rep 8. https://doi.org/10.1038/S41598-018-35471-8

Download references

Acknowledgements

Authors gratefully acknowledge the Start-Up Research Grant (SRG) funded by the Science & Engineering Research Board (SERB) (SRG/2020/000712), Department of Science and Technology (DST) (Government of India, Ministry of Science and Technology), (Technology Development and Transfer, TDP/BDTD/12/2021/General), Indo-German Science & Technology Centre (IGSTC) (IGSTC/Call 2019/NOMIS/22/2020-21/164), and Institute Scheme for Innovative Research and Development (ISIRD) (IIT/SRIC/ISIRD/2019–2020/17), Indian Institute of Technology Kharagpur (IIT Kharagpur), India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorachand Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, R.K., Dutta, N., Shukla, J., Dutta, G. (2023). Lab-On-Chip Electrochemical Biosensor for Rheumatoid Arthritis. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_8

Download citation

Publish with us

Policies and ethics