Skip to main content

A Road Map to Paper-Based Microfluidics Towards Affordable Disease Detection

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Abstract

Microfluidic technology (µF) is an approach in managing very small volumes of fluids through patterned tiny channels. The present chapter focuses on the importance of designing microfluidic systems, their capabilities, and their applications. As microfluidic diagnostics are complex and unaffordable, paper-based microfluidic technology has become viable for low-cost disease diagnosis. The branch of microfluidics that manages very small amounts of fluids through capillary action and are made of paper and porous materials are termed paper-based microfluidics (PBM). This review chapter mainly illustrates the significance of PBM devices and their capabilities, applications, and advantages over microfluidics. Diagnostic applications in the detection of chronic diseases, cancer, dengue, glucose, and tuberculosis with µF and µPAD are also reviewed to the finest level in this review. In the current scenario, Artificial Intelligence (AI) and Internet of Things have become an integral part of every technology. Integration of µF and µPAD with IoT and AI aids to produce better design considerations, which are also covered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Google Scholar 

  2. Lei KF (2018) Introduction: the origin, current status, and future of microfluidics. In: Microfluidics: fundamental, devices and applications: fundamentals and applications. pp 1–18

    Google Scholar 

  3. Tian W-C, Finehout E (2008) Introduction to microfluidics. In: Microfluidics for biological applications. Springer, Boston, MA, pp 1–34

    Google Scholar 

  4. Xia Y, et al (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273(5273):347–349

    Google Scholar 

  5. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  6. Unger MA, et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Google Scholar 

  7. Wu, H, et al (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125(2):554–559

    Google Scholar 

  8. Erickson D, et al (2004) Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal Chem 76(24):7269–7277

    Google Scholar 

  9. Zhang Y, Jiang H-R (2016) A review on continuous-flow microfluidic PCR in droplets: advances, challenges and future. Anal Chim Acta 914:7–16

    Article  Google Scholar 

  10. Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification—a review. Anal Chim Acta 638(2):115–125

    Article  Google Scholar 

  11. Burns, Mark A., et al. An integrated nanoliter DNA analysis device. Science 282(5388):484–487

    Google Scholar 

  12. Lei KF, et al (2015) Electrokinetic acceleration of DNA hybridization in microsystems. Talanta 138:149–154

    Google Scholar 

  13. He Y, et al (2011) Gate manipulation of DNA capture into nanopores. Acs Nano 5(10):8391–8397

    Google Scholar 

  14. Diercks AH, et al (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30–35

    Google Scholar 

  15. Herr AE, et al (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci 104(13):5268–5273

    Google Scholar 

  16. Bhattacharyya A, Klapperich CM (2007) Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed Microdevice 9(2):245–251

    Article  Google Scholar 

  17. Yang D, et al (2008) Electrospunnanofibrous membranes: a novel solid substrate for microfluidic immunoassays for HIV. Adv Mater 20(24):4770–4775

    Google Scholar 

  18. van den Brink FTG, et al (2011) Parallel single-cell analysis microfluidic platform. Electrophoresis 32(22):3094–3100

    Google Scholar 

  19. Lei KF, Wu Z-M, Huang C-H (2015) Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Biosens Bioelectron 74:878–885

    Google Scholar 

  20. Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13(5):769–787

    Article  Google Scholar 

  21. Jayamohan H, Sant HJ, Gale BK (2013) Applications of microfluidics for molecular diagnostics. Microfluidic Diagn 305–334

    Google Scholar 

  22. Gross PG, et al (2007) Applications of microfluidics for neuronal studies. J Neurol Sci 252(2):135–143

    Google Scholar 

  23. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286

    Article  Google Scholar 

  24. Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591

    Article  Google Scholar 

  25. Bai Y, et al (2018) Applications of microfluidics in quantitative biology. Biotechnol J 13(5):1700170

    Google Scholar 

  26. Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. BioNanoScience 2(4):277–286

    Article  Google Scholar 

  27. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144

    Article  Google Scholar 

  28. Kiechle FL, Holland CA (2009) Point-of-care testing and molecular diagnostics: miniaturization required. Clin Lab Med 29(3):555–560

    Article  Google Scholar 

  29. Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8(2):77–84

    Article  Google Scholar 

  30. Moshfeghi AA, Peyman GA (2005) Micro-and nanoparticulates. Adv Drug Deliv Rev 57(14):2047–2052

    Article  Google Scholar 

  31. Rosi NL, et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030

    Google Scholar 

  32. Winter JO, et al (2001) Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv Mater 13(22):1673–1677

    Google Scholar 

  33. Vu TQ, et al (2005) Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 5(4):603–607

    Google Scholar 

  34. Michalet X, et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Google Scholar 

  35. Pinaud F, et al (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9):1679–1687

    Google Scholar 

  36. Esplandiu MJ, et al (2004) Nanoelectrode scanning probes from fluorocarbon-coated single-walled carbon nanotubes. Nano Lett 4(10):1873–1879

    Google Scholar 

  37. Minella W (2021) C. elegans immobilization via microfluidics: a short review. Elveflow

    Google Scholar 

  38. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6(1):011301

    Article  Google Scholar 

  39. Nishat S, et al (2021) based microfluidics: Simplified fabrication and assay methods. Sens Actuat B Chem 336:129681

    Google Scholar 

  40. Sin MLY, et al (2011) System integration-a major step toward lab on a chip. J Biol Eng 5(1):1–22

    Google Scholar 

  41. Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Anal Chem 82(1):329–335

    Article  Google Scholar 

  42. Muller R, Clegg D (1949) SCIENTIFIC COMMUNICATIONS Automatic Paper Chromatography. Anal Chem 21(1):192–192

    Google Scholar 

  43. Weil H, Williams, TI (1951) Early history of chromatography. Nature 167(4257):906–907

    Google Scholar 

  44. Giddings JC (ed) (1976) Advances in chromatography, vol 14. CRC Press

    Google Scholar 

  45. Yang Y, et al (2017) based microfluidic devices: emerging themes and applications. Anal Chem 89(1):71–91

    Google Scholar 

  46. Mao K, et al (2020) based microfluidics for rapid diagnostics and drug delivery. J Control Release 322:187–199

    Google Scholar 

  47. Reid MS, Le XC, Zhang H (2018) Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example. Angew Chem Int Ed 57(37):11856–11866

    Google Scholar 

  48. Duncan R, et al (2016) Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls. Expert Rev Mol Diagn 16(1):83–95

    Google Scholar 

  49. Li C, Boban M, Tuteja A (2017) Open-channel, water-in-oil emulsification in paper-based microfluidic devices. Lab Chip 17(8):1436–1441

    Article  Google Scholar 

  50. Sanjay ST, et al (2018) Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 128:3–28

    Google Scholar 

  51. Barrett TH (2011) The woman who invented notepaper: towards a comparative historiography of paper and print. J R Asiat Soc 21(2):199–210

    Article  Google Scholar 

  52. Hong B, et al (2016) A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed Microdev 18(1):1–8

    Google Scholar 

  53. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095

    Article  Google Scholar 

  54. Li H, Steckl AJ (2018) Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal Chem 91(1):352–371

    Article  Google Scholar 

  55. Zhang H, et al (2019) LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. TrAC Trends Anal Chem 113:44–53

    Google Scholar 

  56. Xu G, et al (2016) Paper‐origami‐based multiplexed malaria diagnostics from whole blood. AngewandteChemie 128(49):15476–15479

    Google Scholar 

  57. Kaarj K, Akarapipad P, Yoon J-Y (2018) Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci Rep 8(1):1–11

    Google Scholar 

  58. Vinatier C, et al (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27(5):307–314

    Google Scholar 

  59. Zhong ZW, Wang ZP, Huang GXD (2012) Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsyst Technol 18(5):649–659

    Article  Google Scholar 

  60. Martinez AW, et al (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab on a Chip 8(12):2146–2150

    Google Scholar 

  61. Roberts BP (1996) Understanding the rates of hydrogen-atom abstraction reactions: empirical, semi-empirical and ab initio approaches. J Chem Soc Perkin Trans 2(12):2719–2725

    Google Scholar 

  62. Lu Y, et al (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82(1):329–335

    Google Scholar 

  63. (2012): Ballerini DR, Li X, W Shen (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. MicrofluidNanofluid 13(5):769–787

    Google Scholar 

  64. Mu X, Zhang YS (2017) Fabrication and applications of paper-based microfluidics. In: Diagnostic devices with microfluidics. CRC Press, pp 45–64

    Google Scholar 

  65. Cretich M, et al (2010) Coating of nitrocellulose for colorimetric DNA microarrays. Anal Biochem 397(1):84–88

    Google Scholar 

  66. Lisa M et al (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25(1):224–227

    Article  Google Scholar 

  67. Hou S-Y, et al (2007) Development of Zeptomole and Attomolar detection sensitivity of biotin–peptide using a dot−blot goldnanoparticle immunoassay. Anal Chem 79(3):980–985

    Google Scholar 

  68. Dou M, et al (2015) Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms. Talanta 145:43–54

    Google Scholar 

  69. Martinez AW, et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707

    Google Scholar 

  70. Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119(1):142–147

    Article  Google Scholar 

  71. Apilux A, et al (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732

    Google Scholar 

  72. Li X, et al (2010) Fabrication of paper-based microfluidic sensors by printing. Coll Surf B Biointerf 76(2):564–570

    Google Scholar 

  73. World Health Organization (2009) 2008–2013 action plan for the global strategy for the prevention and control of noncommunicable diseases: prevent and control cardiovascular diseases, cancers, chronic respiratory diseases and diabetes

    Google Scholar 

  74. World Health Organization (2016) World Health Organization global report on diabetes. World Health Organization, Geneva

    Google Scholar 

  75. Bleakley H, Lange F (2009) Chronic disease burden and the interaction of education, fertility, and growth. Rev Econ Stat 91(1):52–65

    Article  Google Scholar 

  76. Mishra SK, Kumar D, Biradar AM (2012) Electrochemical impedance spectroscopy characterization of mercaptopropionic acid capped ZnS nanocrystal based bioelectrode for the detection of the cardiac biomarker—myoglobin. Bioelectrochemistry 88:118–126

    Article  Google Scholar 

  77. de Ávila BE-F, et al (2018) Disposable amperometricmagnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum. AnalyticaChimicaActa 784:18–24

    Google Scholar 

  78. De La Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7(12):821–824

    Google Scholar 

  79. Diamandis EP (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteom 3(4):367–378

    Google Scholar 

  80. Li NJ, et al (2010) Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clin Biochem 43(12):992–997

    Google Scholar 

  81. Jones MB, et al (2002) Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. PROTEOMICS 2(1):76–84

    Google Scholar 

  82. Loonen AJM, Schuurman R, Van Den Brule AJ (2012) Highlights from the 7th European meeting on molecular diagnostics. Expert Rev Mol Diagn 12(1):17–19

    Google Scholar 

  83. Nahavandi S, et al (2014) Microfluidic platforms for biomarker analysis. Lab on a Chip 14(9):1496–1514

    Google Scholar 

  84. Mu X, et al (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86(11):5338–5344

    Google Scholar 

  85. Choi JR, et al (2015) based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 74:427–439

    Google Scholar 

  86. Sinawang PD, Rai V, Ionescu RE, Marks RS (2016) Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 77:400–408

    Article  Google Scholar 

  87. Prabowo MH, et al (2020) Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices. Anal Bioanalytic Chem 412(12):2915–2925

    Google Scholar 

  88. World Health Organization, et al. (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization

    Google Scholar 

  89. Guzman MG, et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8(12):S7–S16

    Google Scholar 

  90. Thomas SJ, et al (2008) Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: How alterations in assay conditions impact performance. Am J Trop Med Hyg 81(5):825

    Google Scholar 

  91. Salje H, et al (2014) Variability in dengue titer estimates from plaque reduction neutralization tests poses a challenge to epidemiological studies and vaccine development. PLoS Negl Trop Dis 8(6):e2952

    Google Scholar 

  92. Pal S, et al (2014) Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One 9(11):e113411

    Google Scholar 

  93. Lanciotti RS, et al (1992) Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30(3):545–551

    Google Scholar 

  94. Kumar S, et al (2018) Tapered lateral flow immunoassay based point-of-care diagnostic device for ultrasensitive colorimetric detection of dengue NS1. Biomicrofluidics 12(3):034104

    Google Scholar 

  95. Sinawang PD, et al (2016) Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 77:400–408

    Google Scholar 

  96. Wang R, et al (2019) Rapid diagnostic platform for colorimetric differential detection of dengue and Chikungunya viral infections. Anal Chem 91(8):5415–5423

    Google Scholar 

  97. Cokkinides V, et al (2005) American cancer society: cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  98. Fern LA, et al (2011) How frequently do young people with potential cancer symptoms present in primary care? Br J Gen Pract 61(586):e223–e230

    Google Scholar 

  99. Wang Y, et al (2019) Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron 136:84–90

    Google Scholar 

  100. Kaefer M, et al (2010) Association between ischemia modified albumin, inflammation and hyperglycemia in type 2 diabetes mellitus. Clin Biochem 43(4–5):450–454

    Google Scholar 

  101. Lu J et al (2011) Comparable efficacy of self-monitoring of quantitative urine glucose with self-monitoring of blood glucose on glycaemic control in non-insulin-treated type 2 diabetes. Diabetes Res Clin Pract 93(2):179–186

    Article  Google Scholar 

  102. Chen X, et al (2012) Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron 35(1):363–368

    Google Scholar 

  103. Si P, et al (2011) Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosens Bioelectron 26(9):3845–3851

    Google Scholar 

  104. Liu S, Wenqiong S, Ding X (2016) A review on microfluidic paper-based analytical devices for glucose detection. Sensors 16(12):2086

    Article  Google Scholar 

  105. Wu J, et al (2018) Lab-on-chip technology for chronic disease diagnosis. NPJ Dig Med 1(1):1–11

    Google Scholar 

  106. Noiphung J, et al (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Analyticachimicaacta 788:39–45

    Google Scholar 

  107. Chakaya J, et al (2021) Global tuberculosis report 2020–reflections on the global TB burden, treatment and prevention efforts. Int J Infect Dis 113:S7–S12

    Google Scholar 

  108. Gopinath SCB, et al (2016) Aptamer-based ‘point-of-care testing’. Biotechnol Adv 34(3):198–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasti Sateesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagavalli, M. et al. (2023). A Road Map to Paper-Based Microfluidics Towards Affordable Disease Detection. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_4

Download citation

Publish with us

Policies and ethics