Skip to main content

Lab-On-A-Chip Technology in Health Care

  • Chapter
  • First Online:
MEMS and Microfluidics in Healthcare

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 989))

  • 347 Accesses

Abstract

In the current era when early disease diagnosis is a need of the hour for the proper cure, LOC devices are the most reliable and promising solution. Lab-on-a-chip (LoC) devices are used for point-of-care diagnostics as they are compact, cost-effective, integrable, and multiple diagnostics can be performed on a single chip. For this reason, there are different diagnostic techniques used for LOC devices such as optical detection, PCR, qPCR, paper-based assays, and lab-on-a-chip using microfluidic platforms. The main focus of the aforesaid technique is the simplification of device design with multiplexed processes and the availability of automation to make LOC devices user-friendly. In this chapter, different techniques and processes are discussed which are used in diagnostic and healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics, and applications. Chem Soc Rev 39 (3), 11531182. Available from https://doi.org/10.1039/b820557b.

  2. Yılmaz B, Yılmaz F (2018) Chapter 8—Lab-on-a-chip technology and its applications. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering. Academic Press, pp 145–153. ISBN 9780128046593. https://doi.org/10.1016/B978-0-12-804659-3.00008-7

  3. Casquillas G, Timothe´E H (2015) Introduction to lab-on-a-chip 2015: review, history, and future. Retrieved from http://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/introduction-to-lab-on-achip-2015-review-history-and-future/

  4. Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11 (8):620632. Available from https://doi.org/10.1038/nrd3799

  5. Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120

    Google Scholar 

  6. Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C (2018) Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors 9(1):2

    Article  Google Scholar 

  7. Hemmig E, Temiz Y, Gökçe O, Lovchik RD, Delamarche E (2020) Transposing lateral flow immunoassays to capillary-driven microfluidics using self-coalescence modules and capillary assembled receptor carriers. Anal Chem 92(1):940–946

    Article  Google Scholar 

  8. Carrell C, Kava A, Nguyen M, Menger R, Munshi Z, Call Z et al (2019) Beyond the lateral flow assay: a review of paper-based microfluidics. Microelectron Eng 206:45–54

    Article  Google Scholar 

  9. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251

    Article  Google Scholar 

  10. Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117(12):8447–8480

    Article  Google Scholar 

  11. Channon RB, Nguyen MP, Scorzelli AG, Henry EM, Volckens J, Dandy DS et al (2018) Rapid flow in multilayer microfluidic paper-based analytical devices. Lab Chip 18(5):793–802

    Article  Google Scholar 

  12. Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra J-C et al (2017) Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. Lab Chip 17(14):2347–2371

    Article  Google Scholar 

  13. Tian T, Bi Y, Xu X, Zhu Z, Yang C (2018) Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods 10(29):3567–3581

    Article  Google Scholar 

  14. Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23(24): H151–HH76

    Google Scholar 

  15. Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q et al (2019) Recent progress in microfluidics-based biosensing. Anal Chem 91(1):388–404

    Article  Google Scholar 

  16. Apple FS, Christenson RH, Valdes R Jr, Andriak AJ, Berg A, Duh S-H et al (2020) Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction. Clin Chem 45(2):199–205

    Article  Google Scholar 

  17. Clark TJ, McPherson PH, Buechler KF (2002) The triage cardiac panel: cardiac markers for the triage system. Point Care 1(1):42–46

    Article  Google Scholar 

  18. Arshavsky-Graham, S., Segal, E. (2020). Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. In: Advances in Biochemical Engineering/Biotechnology Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2020_127

  19. Timothe´e H (2015b) Microfluidics for DNA analysis. Retrieved from http://www.elveflow.com/microfluidictutorials/microfluidic-reviews-andtutorials/microfluidics-for-dna-analysis-pcr/

  20. Mishra N, Dhwaj A ,Verma D, Prabhakar A (2022) Cost-effective microabsorbance detection based nanoparticle immobilized microfluidic system for potential investigation of diverse chemical contaminants present in drinking water. Anal Chim Acta 1205:339734, ISSN 0003-2670. https://doi.org/10.1016/j.aca.2022.339734

  21. Mishra N, Dwivedi P, Trivedi R (2021) Non-invasive portable uric acid sensor for biomedical and healthcare application. Mater Today: Proc. ISSN 2214–7853. https://doi.org/10.1016/j.matpr.2021.05.626.

  22. Mishra N, Dhwaj A, Vishwakarma R, Prabhakar A (2018) PDMS bonding via A portable, low-cost corona system, for microfluidic chip fabrication. Int J Adv Sci Eng Technol 6 (1). ISSN(p): 2321 e8991, ISSN(e): 2321 e9009

    Google Scholar 

  23. Prabhakar A, Agrawal M, Mishra N, Roy N, Jaiswar A, Verma D, Dhwaj A (2020) Cost-effective smart microfluidic device with immobilized silver nanoparticles and embedded UV-light sources for synergistic water disinfection effect. RSC Adv 10:17479

    Article  Google Scholar 

  24. Prabhakar A, Mishra N, Verma D, Mukherji S (2018) Investigation of dual bend - serpentine/spiral waveguides, coupled to microchannel system, for competent, evanescent wave absorption based, on-chip, biological/chemical sensing applications. RSC Adv 8:35539e35550

    Google Scholar 

  25. Kaigala GV, Behnam M, Bidulock ACE, Bargen C, Johnstone RW, Elliott DG et al. (2010) A scalable and modular lab-on-a-chip genetic analysis instrument. Analyst 135 (7), 16061617. Available from https://doi.org/10.1039/b925

  26. Prabhakar A, Mishra N, Mukherji S (2017) A comprehensive investigation of a microfabricated U-bend polymer waveguide With Analyte micro-reservoir for versatile on-chip sensing applications. J Microelectromech Sys 26 (4):935e945

    Google Scholar 

  27. Beer NR, Hindson BJ, Wheeler EK, Hall SB, Rose KA, Kennedy IM, et al. (2007) On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem 79 (22):84718475. Available from https://doi.org/10.1021/ac701809w

  28. Zhang Y, Ge S, Yu J (2016) Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. TrAC Trends Anal Chem 85, Part C: 166–180. ISSN 0165–9936. https://doi.org/10.1016/j.trac.2016.09.008

  29. Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15 (12):17671776. Available from https://doi.org/10.1101/gr.3770505

  30. Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U et al (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10(22):3157–3162

    Article  Google Scholar 

  31. Sengupta P, Khanra K, Chowdhury AR, Datta P (2019) 4—Lab-on-a-chip sensing devices for biomedical applications. In: Pal K, Kraatz HB, Khasnobish A, Bag S, Banerjee I, Kuruganti U (eds) Woodhead publishing series in electronic and optical materials, bioelectronics and medical devices. Woodhead Publishing, pp 47–95. ISBN 9780081024201. https://doi.org/10.1016/B978-0-08-102420-1.00004-2

  32. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–431. https://doi.org/10.1039/B917668C

    Article  Google Scholar 

  33. Wang J, Ibanez A, Chatrathi MP (2003) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J Am Chem Soc 125 (28):84448445. Available from https://doi.org/10.1021/ja036067e

  34. Schasfoort RBM (2004) Proteomics-on-a-chip: the challenge to couple lab-on-a-chip unit operations. Expert Rev Proteomics 1 (1):123132. Available from https://doi.org/10.1586/14789450.1.1.123

  35. Mouradian S (2002) Lab-on-a-chip: applications in proteomics. Curr Opin Chem Biol 6 (1):5156. Available from https://doi.org/10.1016/S1367-5931(01)00280-0

  36. Ma Z, Li B, Peng J, Gao D (2022) Recent development of drug delivery systems through microfluidics: from synthesis to evaluation. Pharmaceutics 14(2):434. https://doi.org/10.3390/pharmaceutics14020434

    Article  Google Scholar 

  37. Mishra N, Mishra M, Prabhakar A (2021) Design and fabrication of bio-mems device for detection of heavy metalion present in potable water. In: 2021 International conference on advances in electrical, computing, communication and sustainable technologies (ICAECT). pp 1–3. https://doi.org/10.1109/ICAECT49130.2021.9392388

  38. Wang J (2000) From DNA biosensors to gene chips. Nucleic Acid Res 28 (16): 30113016. Available from https://doi.org/10.1093/nar/28.16.3011

  39. Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26 (3):R73R98. Available from https://doi.org/10.1088/0967-3334/26/3/R02

  40. Timothe´e H (2015a) Microfluidic PCR, qPCR, RT-PCR & qRT-PCR. Retrieved from http://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/microfluidic-pcr-qpcr-rtpcr/

  41. Curtis Saunders D, Holst GL, Phaneuf CR, Pak N, Marchese M, Sondej N et al. (2013) Rapid, quantitative, reverse transcription PCR in a polymer microfluidicchip. Biosens Bioelectron 44:222228. Available from https://doi.org/10.1016/j.bios.2013.01.019

  42. Ramalingam N, Rui Z, Liu HB, Dai CC, Kaushik R, Ratnaharika B, et al. (2010) Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens. Sens Actuat B Chem 145 (1):543552. Available from https://doi.org/10.1016/j.snb.2009.11.025

  43. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72 (9):330A335A. Available from https://doi.org/10.1021/ac002800y

  44. Freire SLS, Wheeler AR (2006) Proteome-on-a-chip: mirage, or on the horizon? lab chip 6 (11), 1415. Available from: https://doi.org/10.1039/b609871a

    Article  Google Scholar 

  45. Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W (2022) Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 197:113767. ISSN 0956-5663. https://doi.org/10.1016/j.bios.2021.113767

  46. Sedgwick H, Caron F, Monaghan PB, Kolch W, Cooper J.M., 2008. Lab-on-a-chip technologies for proteomic analysis from isolated cells. J R Soc Interface 5 (Suppl 2), S123S130. Available from: https://doi.org/10.1098/rsif.2008.0169

  47. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442 (7101):368373. Available from https://doi.org/10.1038/nature05058

  48. Zhang P (2022) Chapter 6—Organ-on-a-chip. In: Li XJ, Yang C, Li PCH. Multidisciplinary microfluidic and nanofluidic lab-on-a-chip. Elsevier, pp 181–198. ISBN 9780444594327. https://doi.org/10.1016/B978-0-444-59432-7.00007-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, N. (2023). Lab-On-A-Chip Technology in Health Care. In: Guha, K., Dutta, G., Biswas, A., Srinivasa Rao, K. (eds) MEMS and Microfluidics in Healthcare. Lecture Notes in Electrical Engineering, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-19-8714-4_2

Download citation

Publish with us

Policies and ethics