Abstract
Plants and microorganisms are part of ecosystems. Soil microbes have a crucial role in providing nutrition and thus influence plant growth. Plants through their root exudates affect the microbiome structures. The soil biogeochemical process in the rhizosphere is controlled by soil microbial activity that directly or indirectly supports the plant performance. The mechanisms of this interaction and the alteration between plant-rhizosphere-microbiome are bidirectional and poorly understood. Plants release the exudates through the rhizodeposition that become a nutrient source for soil microbes to grow. Land use change will affect the soil biota structure and composition through the soil biomass and nutrient input. Land use change will change the plant aboveground biomass then it will the shifted of the bacterial and fungal communities. Land use change due to anthropogenic activities positively correlated with the soil chemical characteristics and it will have a negative effect on Proteobacteria, and positive effect on Acidobacteria and Actinobacteria. We focus on the plants and root-associated bacteria interaction that enhance soil nutrition. This interaction results in plant traits changes, including the members of the plant-associated community at the trophic levels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah Kadmiri I (2021) Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:628379. https://doi.org/10.3389/fmicb.2021.628379
Adedayo AA, Babalola OO, Prigent-Combaret C, Cruz C, Stefan M, Kutu F, Glick BR (2022) The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: a review. PeerJ 10:e13405. https://doi.org/10.7717/peerj.13405
Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011) Soil microbial community successional patterns during forest ecosystem restoration. Appl Environ Microbiol 77(17):6158–6164. https://doi.org/10.1128/AEM.00764-11
Berkelmann D, Schneider D, Meryandini A, Daniel R (2020) Unravelling the effects of tropical land use conversion on the soil microbiome. Environ Microbiome 15(1):5. https://doi.org/10.1186/s40793-020-0353-3
Beule L, Karlovsky P (2021) Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS One 16(2):e0246919. https://doi.org/10.1371/journal.pone.0246919
Beule L, Vaupel A, Moran-Rodas VE (2022) Abundance, diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems: a review. Microorganisms 10(3):616. https://doi.org/10.3390/microorganisms10030616
Bourguiba H, Audergon J-M, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, D’Onofrio C, Asma BM, Santoni S, Khadari B (2012) Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12(1):49. https://doi.org/10.1186/1471-2229-12-49
Bradford M, Veen C, Bonis A, Bradford E, Classen A, Cornelissen J, Crowther T, De Long J, Freschet G, Kardol P, Manrubia M, Maynard D, Newman G, Logtestijn R, Viketoft M, Wardle D, Wieder W, Wood S, Putten W (2017) A test of the hierarchical model of litter decomposition. Nat Ecol Evol 1(12):1836–1845. https://doi.org/10.1038/s41559-017-0367-4
Brummitt N, Araújo AC, Harris T (2021) Areas of plant diversity—what do we know? Plants People Planet 3(1):33–44. https://doi.org/10.1002/ppp3.10110
Bulgarelli D, Schlaeppi K, Spaepen S, Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 32:64. https://doi.org/10.1146/annurev-arplant-050312-120106
Cania B, Vestergaard G, Krauss M, Fliessbach A, Schloter M, Schulz S (2019) A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environ Microbiome 14(1):1. https://doi.org/10.1186/s40793-019-0341-7
Checchetto V, Teardo E, Carraretto L, Formentin E, Bergantino E, Giacometti GM, Szabo I (2013) Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys Chem 182:51–57. https://doi.org/10.1016/j.bpc.2013.06.006
Chen G, Zhu H, Zhang Y (2003) Soil microbial activities and carbon and nitrogen fixation. Res Microbiol 154(6):393–398. https://doi.org/10.1016/S0923-2508(03)00082-2
Corlett RT (2016) Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers 38(1):10–16. https://doi.org/10.1016/j.pld.2016.01.001
Cornell CR, Zhang Y, Ning D, Wu L, Wagle P, Steiner JL, Xiao X, Zhou J (2022) Temporal dynamics of bacterial communities along a gradient of disturbance in a U.S. Southern Plains Agroecosystem. mBio 13(3):e03829-21. https://doi.org/10.1128/mbio.03829-21
de Vrieze J (2015) The littlest farmhands. Science 349(6249):680–683. https://doi.org/10.1126/science.349.6249.680
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104
Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects  a review. J Soil Sci Plant Nutr 17(4):897–911. https://doi.org/10.4067/S0718-95162017000400005
Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579–590. https://doi.org/10.1038/nrmicro.2017.87
Hart MM, Cross AT, D’Agui HM, Dixon KW, Van der Heyde M, Mickan B, Horst C, Grez BM, Valliere JM, Rossel RV, Whiteley A, Wong WS, Zhong H, Nevill P (2020) Examining assumptions of soil microbial ecology in the monitoring of ecological restoration. Ecol Solutions Evid 1(2):e12031. https://doi.org/10.1002/2688-8319.12031
Havrilla CA, Munson SM, McCormick ML, Laushman KM, Balazs KR, Butterfield BJ (2020) RestoreNet: an emerging restoration network reveals controls on seeding success across dryland ecosystems. J Appl Ecol 57(11):2191–2202. https://doi.org/10.1111/1365-2664.13715
Isaac ME, Borden KA (2019) Nutrient acquisition strategies in agroforestry systems. Plant Soil 444(1–2):1–19. https://doi.org/10.1007/s11104-019-04232-5
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617
Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7. https://doi.org/10.1155/2019/4917256
Kawasaki A, Donn S, Ryan P, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533. https://doi.org/10.1371/journal.pone.0164533
Kuyah S, Whitney CW, Jonsson M, Sileshi GW, Öborn I, Muthuri CW, Luedeling E (2019) Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron Sustain Dev 39(5):47. https://doi.org/10.1007/s13593-019-0589-8
Lacerda-Júnior GV, Noronha MF, Cabral L, Delforno TP, de Sousa STP, Fernandes-Júnior PI, Melo IS, Oliveira VM (2019) Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front Microbiol 10:648. https://www.frontiersin.org/articles/10.3389/fmicb.2019.00648
Lehmann A, Zheng W, Ryo M, Soutschek K, Roy J, Rongstock R, Maaß S, Rillig MC (2020) Fungal traits important for soil aggregation. Front Microbiol 10:2904. https://doi.org/10.3389/fmicb.2019.02904
Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11:e02999. https://doi.org/10.1002/ecs2.2999
Lu H, Sun J, Zhu L (2017) The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 7(1):7130. https://doi.org/10.1038/s41598-017-07413-3
Lughadha EN, Govaerts R, Belyaeva I, Black N, Lindon H, Allkin R, Magill RE, Nicolson N (2016) Counting counts: revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa 272(1):82. https://doi.org/10.11646/phytotaxa.272.1.5
Massalha H, Korenblum E, Malitsky S, Shapiro O, Aharoni A (2017) Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci U S A 114:4549–4554. https://doi.org/10.1073/pnas.1618584114
Mohammadipanah F, Wink J (2015) Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol 6:1541. https://doi.org/10.3389/fmicb.2015.01541
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. https://doi.org/10.1038/nrmicro3109
Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18(1):85–95. https://doi.org/10.1111/ele.12381
Ravn NR, Michelsen A, Reboleira ASPS (2020) Decomposition of organic matter in caves. Front Ecol Evol 8:554651. https://doi.org/10.3389/fevo.2020.554651
Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2021) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21(1):49–68. https://doi.org/10.1007/s42729-020-00342-7
Reddy S, Osborne J (2022) An insight on the advancements of biological technologies in the bioremediation of textile effluents. Urban Water J 19(5):468–480. https://doi.org/10.1080/1573062X.2022.2030369
Ribeiro IDA, Volpiano CG, Vargas LK, Granada CE, Lisboa BB, Passaglia LMP (2020) Use of mineral weathering bacteria to enhance nutrient availability in crops: a review. Front Plant Sci 11:590774. https://doi.org/10.3389/fpls.2020.590774
Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221–222:42–47. https://doi.org/10.1016/j.plantsci.2014.01.007
Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003
Schlatter DC, Yin C, Hulbert S, Paulitz TC (2020) Core rhizosphere microbiomes of dryland wheat are influenced by location and land use history. Appl Environ Microbiol 86(5):e02135-19. https://doi.org/10.1128/AEM.02135-19
Steinauer K, Chatzinotas A, Eisenhauer N (2016) Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol Evol 6(20):7387–7396. https://doi.org/10.1002/ece3.2454
Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium nostoc commune. Appl Environ Microbiol 71(11):7327–7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005
Tardy V, Chabbi A, Charrier X, de Berranger C, Reignier T, Dequiedt S, Faivre-Primot C, Terrat S, Ranjard L, Maron P-A (2015) Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One 10(6):e0130672. https://doi.org/10.1371/journal.pone.0130672
van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
Wang C, Masoudi A, Wang M, Yang J, Yu Z, Liu J (2021) Land-use types shape soil microbial compositions under rapid urbanization in the Xiong’an New Area, China. Sci Total Environ 777:145976. https://doi.org/10.1016/j.scitotenv.2021.145976
Williams A, Birt HWG, Raghavendra A, Dennis PG (2022) Cropping system diversification influences soil microbial diversity in subtropical dryland farming systems. Microb Ecol. https://doi.org/10.1007/s00248-022-02074-w
Zaia F, Gama-Rodrigues A, Gama-Rodrigues E, Moço M, Fontes A, Machado RC, Baligar V (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agroforestry Syst 86:197–212. https://doi.org/10.1007/s10457-012-9550-4
Zhang X, Gao G, Wu Z, Wen X, Zhong H, Zhong Z, Bian F, Gai X (2019) Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Appl Soil Ecol 143:192–200. https://doi.org/10.1016/j.apsoil.2019.07.019
Acknowledgment
I am thankful to the Ministry of Research, Technology and Higher Education who provided research funding related to plant diversity and soil metagenomics.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Priyadarshini, R., Rohman, S., Hamzah, A. (2023). The Dynamics of Soil Microbiome Upon Anthropogenic Changes in Plant Diversity and Land Management Practices. In: Ramamoorthy, S., Buot Jr., I.E., Rajasekaran, C. (eds) Plant Diversity in Biocultural Landscapes. Springer, Singapore. https://doi.org/10.1007/978-981-19-8649-9_17
Download citation
DOI: https://doi.org/10.1007/978-981-19-8649-9_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-8648-2
Online ISBN: 978-981-19-8649-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)