Skip to main content

In Situ Bone Regeneration in Oral and Maxillofacial Surgery: Definition, Indications, and Manufacturing Considerations

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery

Abstract

The application of regenerative methods in treating maxillofacial bone defects, through combined establishing of a protected healing space and elevation of regenerative capacities of the recipient bed and host body, can be categorized as in situ bone regeneration. Present data regarding the consolidation of relatively emerging technologies with the in situ bone regeneration treatment trajectory suggests enhanced rigidity of CAD-CAM-fabricated meshes, apt perseverance of the underlying space, and yielding of clinically promising augmentative results with. However, complications, such as dehiscence and subsequent graft loss, infection and hampered regeneration, necessitate comprehensive cognition in terms of etiology, potential risks, and interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462(7272):433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atala A. Engineering tissues, organs and cells. J Tissue Eng Regen Med. 2007;1(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  3. Salehi-Nik N, Rezai Rad M, Kheiri L, Nazeman P, Nadjmi N, Khojasteh A. Buccal fat pad as a potential source of stem cells for bone regeneration: a literature review. Stem Cells Int. 2017;2017:8354640.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ko IK, Lee SJ, Atala A, Yoo JJ. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med. 2013;45:e57.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Connors CA, Liacouras PC, Grant GT. Custom titanium ridge augmentation matrix (CTRAM): a case report. Int J Periodontics Restorative Dent. 2016;36(5):707–14.

    Article  PubMed  Google Scholar 

  6. Al-Ardah AJ, Alqahtani N, AlHelal A, Goodacre BJ, Swamidass R, Garbacea A, et al. Using virtual ridge augmentation and 3-dimensional printing to fabricate a titanium mesh positioning device: a novel technique letter. J Oral Implantol. 2018;44(4):293–9.

    Article  PubMed  Google Scholar 

  7. Lizio G, Pellegrino G, Corinaldesi G, Ferri A, Marchetti C, Felice P. Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study. Clin Oral Implants Res. 2022;33(6):607–21.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiapasco M, Casentini P, Tommasato G, Dellavia C, Del Fabbro M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: preliminary results of a retrospective clinical study in humans. Clin Oral Implants Res. 2021;32(4):498–510.

    Article  CAS  PubMed  Google Scholar 

  9. Dellavia C, Canciani E, Pellegrini G, Tommasato G, Graziano D, Chiapasco M. Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer-aided design/computer-assisted manufacture titanium mesh in humans: a cohort study. Clin Implant Dent Relat Res. 2021;23(4):600–11.

    Article  PubMed  Google Scholar 

  10. Ciocca L, Lizio G, Baldissara P, Sambuco A, Scotti R, Corinaldesi G. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized titanium mesh: preliminary results of an open prospective study. J Oral Implantol. 2018;44(2):131–7.

    Article  PubMed  Google Scholar 

  11. Tallarico M, Park C-J, Lumbau AI, Annucci M, Baldoni E, Koshovari A, et al. Customized 3D-printed titanium mesh developed to regenerate a complex bone defect in the aesthetic zone: a case report approached with a fully digital workflow. Materials (Basel). 2020;13(17):3874.

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Wang C, Li X, Fu G, Chen D, Huang Y. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: a retrospective case series study. Clin Implant Dent Relat Res. 2021;23(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  13. Sagheb K, Schiegnitz E, Moergel M, Walter C, Al-Nawas B, Wagner W. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh. Int J Implant Dent. 2017;3(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mounir M, Shalash M, Mounir S, Nassar Y, El Khatib O. Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: a randomized clinical trial. Clin Implant Dent Relat Res. 2019;21(5):960–7.

    Article  PubMed  Google Scholar 

  15. Tarsitano A, Battaglia S, Ciocca L, Scotti R, Cipriani R, Marchetti C. Surgical reconstruction of maxillary defects using a computer-assisted design/computer-assisted manufacturing-produced titanium mesh supporting a free flap. J Craniomaxillofac Surg. 2016;44(9):1320–6.

    Article  PubMed  Google Scholar 

  16. Fu K, Liu Y, Gao N, Cai J, He W, Qiu W. Reconstruction of maxillary and orbital floor defect with free fibula flap and whole individualized titanium mesh assisted by computer techniques. J Oral Maxillofac Surg. 2017;75(8):1791.e1–9.

    Article  PubMed  Google Scholar 

  17. Shan X-F, Chen H-M, Liang J, Huang J-W, Cai Z-G. Surgical reconstruction of maxillary and mandibular defects using a printed titanium mesh. J Oral Maxillofac Surg. 2015;73(7):1437.e1–9.

    Article  PubMed  Google Scholar 

  18. Antúnez-Conde R, Salmerón JI, Díez-Montiel A, Agea M, Gascón D, Sada Á, et al. Mandibular reconstruction with fibula flap and dental implants through virtual surgical planning and three different techniques: double-barrel flap, implant dynamic navigation and CAD/CAM mesh with iliac crest graft. Front Oncol. 2021;11:719712.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma J, Ma L, Wang Z, Zhu X, Wang W. The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures: a case report. Medicine (Baltimore). 2017;96(27):e7250.

    Article  PubMed  Google Scholar 

  20. Shi Y, Liu J, Du M, Zhang S, Liu Y, Yang H, et al. Customized barrier membrane (titanium alloy, poly ether-ether ketone and unsintered hydroxyapatite/poly-l-lactide) for guided bone regeneration. Front Bioeng Biotechnol. 2022;10:916967.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Corinaldesi G, Pieri F, Sapigni L, Marchetti C. Evaluation of survival and success rates of dental implants placed at the time of or after alveolar ridge augmentation with an autogenous mandibular bone graft and titanium mesh: a 3- to 8-year retrospective study. Int J Oral Maxillofac Implants. 2009;24(6):1119–28.

    PubMed  Google Scholar 

  22. Louis PJ, Gutta R, Said-Al-Naief N, Bartolucci AA. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg. 2008;66(2):235–45.

    Article  PubMed  Google Scholar 

  23. Miyamoto I, Funaki K, Yamauchi K, Kodama T, Takahashi T. Alveolar ridge reconstruction with titanium mesh and autogenous particulate bone graft: computed tomography-based evaluations of augmented bone quality and quantity. Clin Implant Dent Relat Res. 2012;14(2):304–11.

    Article  PubMed  Google Scholar 

  24. Briguglio F, Falcomatà D, Marconcini S, Fiorillo L, Briguglio R, Farronato D. The use of titanium mesh in guided bone regeneration: a systematic review. Int J Dent. 2019;2019:9065423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Proussaefs P, Lozada J. Use of titanium mesh for staged localized alveolar ridge augmentation: clinical and histologic-histomorphometric evaluation. J Oral Implantol. 2006;32(5):237–47.

    Article  PubMed  Google Scholar 

  26. Farid Shehab M, Hamid NMA, Askar NA, Elmardenly AM. Immediate mandibular reconstruction via patient-specific titanium mesh tray using electron beam melting/CAD/rapid prototyping techniques: one-year follow-up. Int J Med Robot. 2018;14(3):e1895.

    Article  PubMed  Google Scholar 

  27. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput. 2011;49(11):1347–52.

    Article  CAS  PubMed  Google Scholar 

  28. Redwood B, Schöffer F, Garret B. The 3D printing handbook: technologies, design and applications. 1st ed. Amsterdam: 3D Hubs; 2017.

    Google Scholar 

  29. Popov V, Katz-Demyanetz A, Bamberger M. Heat transfer and phase formation through EBM 3D-printing of Ti-6Al-4V cylindrical parts. In: Defect and diffusion forum. Switzerland: Trans Tech; 2018. p. 190–5.

    Google Scholar 

  30. El Morsy OA, Barakat A, Mekhemer S, Mounir M. Assessment of 3-dimensional bone augmentation of severely atrophied maxillary alveolar ridges using patient-specific poly ether-ether ketone (PEEK) sheets. Clin Implant Dent Relat Res. 2020;22(2):148–55.

    Article  PubMed  Google Scholar 

  31. Matsuo A, Chiba H, Takahashi H, Toyoda J, Abukawa H. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology. 2010;98(1):85–8.

    Article  PubMed  Google Scholar 

  32. Sumida T, Otawa N, Kamata YU, Kamakura S, Mtsushita T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg. 2015;43(10):2183–8.

    Article  PubMed  Google Scholar 

  33. Ciocca L, Ragazzini S, Fantini M, Corinaldesi G, Scotti R. Work flow for the prosthetic rehabilitation of atrophic patients with a minimal-intervention CAD/CAM approach. J Prosthet Dent. 2015;114(1):22–6.

    Article  PubMed  Google Scholar 

  34. Hartmann A, Seiler M. Minimizing risk of customized titanium mesh exposures—a retrospective analysis. BMC Oral Health. 2020;20(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nickenig H-J, Riekert M, Zirk M, Lentzen M-P, Zöller JE, Kreppel M. 3D-based buccal augmentation for ideal prosthetic implant alignment-an optimized method and report on 7 cases with pronounced buccal concavities. Clin Oral Investig. 2022;26(5):3999–4010.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cucchi A, Vignudelli E, Franceschi D, Randellini E, Lizio G, Fiorino A, et al. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial. Clin Oral Implants Res. 2021;32(12):1411–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hassani A, Khojasteh A, Shamsabad AN. The anterior palate as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg. 2005;63(8):1196–200.

    Article  PubMed  Google Scholar 

  38. Khojasteh A, Kheiri L, Behnia H, Tehranchi A, Nazeman P, Nadjmi N, et al. Lateral ramus cortical bone plate in alveolar cleft osteoplasty with concomitant use of buccal fat pad derived cells and autogenous bone: phase I clinical trial. Biomed Res Int. 2017;2017:6560234.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14.

    Article  PubMed  Google Scholar 

  40. Garcia C, Gallardo A, López D, Elvira C, Azzahti A, Lopez-Martinez E, et al. Smart pH-responsive antimicrobial hydrogel scaffolds prepared by additive manufacturing. ACS Appl Bio Mater. 2018;1(5):1337–47.

    Article  CAS  PubMed  Google Scholar 

  41. Seiler M, Kämmerer PW, Peetz M, Hartmann A. Customized lattice structure in reconstruction of three-dimensional alveolar defects. Int J Comput Dent. 2018;21(3):261–7.

    PubMed  Google Scholar 

  42. Polimeni G, Albandar JM, Wikesjö UME. Prognostic factors for alveolar regeneration: osteogenic potential of resident bone. J Clin Periodontol. 2004;31(10):840–4.

    Article  PubMed  Google Scholar 

  43. Naenni N, Lim H-C, Papageorgiou SN, Hämmerle CHF. Efficacy of lateral bone augmentation prior to implant placement: a systematic review and meta-analysis. J Clin Periodontol. 2019;46(Suppl 21):287–306.

    Article  PubMed  Google Scholar 

  44. Bonig H, Priestley GV, Oehler V, Papayannopoulou T. Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol. 2007;35(2):326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G. The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets. 2014;18(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  46. Ratajczak MZ, Kim C, Janowska-Wieczorek A, Ratajczak J. The expanding family of bone marrow homing factors for hematopoietic stem cells: stromal derived factor 1 is not the only player in the game. ScientificWorldJournal. 2012;2012:758512.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ratajczak MZ, Kim C, Ratajczak J, Janowska-Wieczorek A. Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. Adv Exp Med Biol. 2013;735:219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klyachkin YM, Karapetyan AV, Ratajczak MZ, Abdel-Latif A. The role of bioactive lipids in stem cell mobilization and homing: novel therapeutics for myocardial ischemia. Biomed Res Int. 2014;2014:653543.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, Forchap S, et al. Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood. 2004;104(6):1662–70.

    Article  CAS  PubMed  Google Scholar 

  50. Hossein-Khannazer N, Hashemi SM, Namaki S, Ghanbarian H, Sattari M, Khojasteh A. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells. Life Sci. 2019;216:111–8.

    Article  CAS  PubMed  Google Scholar 

  51. Rezai Rad M, Bohloli M, Akhavan Rahnama M, Anbarlou A, Nazeman P, Khojasteh A. Impact of tissue harvesting sites on the cellular behaviors of adipose-derived stem cells: implication for bone tissue engineering. Stem Cells Int. 2017;2017:2156478.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Adamiak M, Moore JB, Zhao J, Abdelbaset-Ismail A, Grubczak K, Rzeszotek S, et al. Downregulation of heme oxygenase 1 (HO-1) activity in hematopoietic cells enhances their engraftment after transplantation. Cell Transplant. 2016;25(7):1265–76.

    Article  PubMed  Google Scholar 

  53. Scheines C, Hokett SD, Katancik JA. Recombinant human platelet-derived growth factor-BB in human alveolar ridge augmentation: a review of the literature. Int J Oral Maxillofac Implants. 2018;33(5):1047–56.

    Article  PubMed  Google Scholar 

  54. De Angelis N, De Lorenzi M, Benedicenti S. Surgical combined approach for alveolar ridge augmentation with titanium mesh and rhPDGF-BB: a 3-year clinical case series. Int J Periodontics Restorative Dent. 2015;35(2):231–7.

    Article  PubMed  Google Scholar 

  55. Funato A, Ishikawa T, Kitajima H, Yamada M, Moroi H. A novel combined surgical approach to vertical alveolar ridge augmentation with titanium mesh, resorbable membrane, and rhPDGF-BB: a retrospective consecutive case series. Int J Periodontics Restorative Dent. 2013;33(4):437–45.

    Article  PubMed  Google Scholar 

  56. Annibali S, Cristalli MP, Dell’Aquila D, Bignozzi I, La Monaca G, Pilloni A. Short dental implants: a systematic review. J Dent Res. 2012;91(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  57. Ferreira CF, da Escóssia J, e TPT S, Luiz Zétola A, Nunes Tavares R. Reconstruction of severely atrophic pre-maxilla using RhBMP-2 and titanium mesh for dental implants. JDOI. 2015;1(1):15–20.

    Article  Google Scholar 

  58. de Freitas RM, Susin C, da Tamashiro WMSC, Chaves de Souza JA, Marcantonio C, Wikesjö UM, et al. Histological analysis and gene expression profile following augmentation of the anterior maxilla using rhBMP-2/ACS versus autogenous bone graft. J Clin Periodontol. 2016;43(12):1200–7.

    Article  PubMed  Google Scholar 

  59. Alraei K, Shrqawi J, Alarusi K. Application of recombinant human BMP-2 with bone marrow aspirate concentrate and platelet-rich fibrin in titanium mesh for vertical maxillary defect reconstruction prior to implant placement. Case Rep Dent. 2021;2021:1–7.

    Google Scholar 

  60. Lorenz J, Al-Maawi S, Sader R, Ghanaati S. Individualized titanium mesh combined with platelet-rich fibrin and deproteinized bovine bone: a new approach for challenging augmentation. J Oral Implantol. 2018;44(5):345–51.

    Article  PubMed  Google Scholar 

  61. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Behavior of gingival fibroblasts on titanium implant surfaces in combination with either injectable-PRF or PRP. Int J Mol Sci. 2017;18(2):331.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  63. Ghanaati S, Al-Maawi S, Conrad T, Lorenz J, Rössler R, Sader R. Biomaterial-based bone regeneration and soft tissue management of the individualized 3D-titanium mesh: an alternative concept to autologous transplantation and flap mobilization. J Craniomaxillofac Surg. 2019;47(10):1633–44.

    Article  PubMed  Google Scholar 

  64. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  65. Khan SN, Lane JM. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Expert Opin Biol Ther. 2004;4(5):741–8.

    Article  CAS  PubMed  Google Scholar 

  66. Chin M, Ng T, Tom WK, Carstens M. Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts. J Craniofac Surg. 2005;16(5):778–89.

    Article  PubMed  Google Scholar 

  67. Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, et al. Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res. 2004;19(12):2021–32.

    Article  CAS  PubMed  Google Scholar 

  68. Wikesjö UME, Polimeni G, Qahash M. Tissue engineering with recombinant human bone morphogenetic protein-2 for alveolar augmentation and oral implant osseointegration: experimental observations and clinical perspectives. Clin Implant Dent Relat Res. 2005;7(2):112–9.

    Article  PubMed  Google Scholar 

  69. Hosseinpour S, Rad MR, Khojasteh A, Zadeh HH. Antibody administration for bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2018;13(4):292–315.

    Article  CAS  PubMed  Google Scholar 

  70. Khojasteh A, Hosseinpour S, Dehghan MM, Mashhadiabbas F, Rezai Rad M, Ansari S, et al. Antibody-mediated osseous regeneration for bone tissue engineering in canine segmental defects. Biomed Res Int. 2018;2018:9508721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol. 2002;30(7):783–91.

    Article  CAS  PubMed  Google Scholar 

  72. Cuthbert RJ, Giannoudis PV, Wang XN, Nicholson L, Pawson D, Lubenko A, et al. Examining the feasibility of clinical grade CD271+ enrichment of mesenchymal stromal cells for bone regeneration. PloS One. 2015;10(3):e0117855.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kuçi S, Kuçi Z, Kreyenberg H, Deak E, Pütsch K, Huenecke S, et al. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica. 2010;95(4):651–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anton ES, Weskamp G, Reichardt LF, Matthew WD. Nerve growth factor and its low-affinity receptor promote schwann cell migration. Proc Natl Acad Sci U S A. 1994;91(7):2795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang Y, Hu C, Yu S, Yan J, Peng H, Ouyang HW, et al. Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling. Arthritis Res Ther. 2015;17:327.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sun H, Guo Q, Shi C, McWilliam RH, Chen J, Zhu C, et al. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials. 2022;280:121243.

    Article  CAS  PubMed  Google Scholar 

  77. Cipitria A, Boettcher K, Schoenhals S, Garske DS, Schmidt-Bleek K, Ellinghaus A, et al. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect. Acta Biomater. 2017;60:50–63.

    Article  CAS  PubMed  Google Scholar 

  78. Thevenot PT, Nair AM, Shen J, Lotfi P, Ko C-Y, Tang L. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials. 2010;31(14):3997–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li X, He X-T, Yin Y, Wu R-X, Tian B-M, Chen F-M. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med. 2017;21(12):3162–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Niedermair T, Schirner S, Seebröker R, Straub RH, Grässel S. Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci Rep. 2018;8(1):9199.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim SJ, Kim JE, Kim SH, Kim SJ, Jeon SJ, Kim SH, Jung Y. Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model. Biomaterials. 2016;74:119–30. https://doi.org/10.1016/j.biomaterials.2015.09.040. Epub 2015 Sep 30. PMID: 26454050

  82. Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: current progress and future directions. Adv Drug Deliv Rev. 2021;174:613–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: state of the art. J Cell Physiol. 2019;234(2):1099–110.

    Article  CAS  PubMed  Google Scholar 

  85. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ahmad P, Stoddart MJ, Della BE. The role of noncoding rnas in osteogenic differentiation of human periodontal ligament stem cells. CMTR Open. 2021;6:247275122199922.

    Article  Google Scholar 

  87. Aurilia C, Donati S, Palmini G, Miglietta F, Iantomasi T, Brandi ML. The involvement of long non-coding RNAs in bone. Int J Mol Sci. 2021;22(8):3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duan L, Liang Y, Xu X, Wang J, Li X, Sun D, et al. Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res Ther. 2020;22(1):279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ping J, Li L, Dong Y, Wu X, Huang X, Sun B, et al. The role of long non-coding RNAs and circular RNAs in bone regeneration: modulating miRNAs function. J Tissue Eng Regen Med. 2022;16(3):227–43.

    Article  CAS  PubMed  Google Scholar 

  90. Zuo C, Wang Z, Lu H, Dai Z, Liu X, Cui L. Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol Med Rep. 2013;8(2):463–7.

    Article  PubMed  Google Scholar 

  91. Peng S, Cao L, He S, Zhong Y, Ma H, Zhang Y, et al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells. Stem Cells Int. 2018;2018:8273648.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aich M, Chakraborty D. Role of lncRNAs in stem cell maintenance and differentiation. Curr Top Dev Biol. 2020;138:73–112.

    Article  CAS  PubMed  Google Scholar 

  93. Sikora M, Marycz K, Smieszek A. Small and long non-coding RNAs as functional regulators of bone homeostasis, acting alone or cooperatively. Mol Ther Nucleic Acids. 2020;21:792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang M, Ge X, Zheng Y, Wang C, Zhang Y, Lin Y. Microarray analysis reveals that lncRNA PWRN1-209 promotes human bone marrow mesenchymal stem cell osteogenic differentiation on microtopography titanium surface in vitro. J Biomed Mater Res Part B Appl Biomater. 2020;108(7):2889–902.

    Article  CAS  Google Scholar 

  95. Li D, Yu K, Xiao T, Dai Y, Liu L, Li H, et al. LOC103691336/miR-138-5p/BMPR2 axis modulates Mg-mediated osteogenic differentiation in rat femoral fracture model and rat primary bone marrow stromal cells. J Cell Physiol. 2019;234(11):21316–30.

    Article  CAS  PubMed  Google Scholar 

  96. Jin C, Zheng Y, Huang Y, Liu Y, Jia L, Zhou Y. Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells. Cell Biol Int. 2017;41(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  97. Kim KM, Park SJ, Jung S-H, Kim EJ, Jogeswar G, Ajita J, et al. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res. 2012;27(8):1669–79.

    Article  PubMed  Google Scholar 

  98. Jaskiewicz L, Filipowicz W. Role of dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol. 2008;320:77–97.

    CAS  PubMed  Google Scholar 

  99. Eguchi T, Watanabe K, Hara ES, Ono M, Kuboki T, Calderwood SK. OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesenchymal stem cells. PloS One. 2013;8(3):e58796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bouyer M, Guillot R, Lavaud J, Plettinx C, Olivier C, Curry V, et al. Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials. 2016;104:168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KW-H. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today. 2014;19(6):794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, et al. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano. 2014;8(8):8082–94.

    Article  CAS  PubMed  Google Scholar 

  103. Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, et al. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials. 2007;28(6):1027–35.

    Article  CAS  PubMed  Google Scholar 

  104. Park S-Y, Kim K-H, Kim S, Lee Y-M, Seol Y-J. BMP-2 gene delivery-based bone regeneration in dentistry. Pharmaceutics. 2019;11(8):393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Khorsand B, Nicholson N, Do A-V, Femino JE, Martin JA, Petersen E, et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J Control Release. 2017;248:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Malek-Khatabi A, Javar HA, Dashtimoghadam E, Ansari S, Hasani-Sadrabadi MM, Moshaverinia A. In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater. 2020;108:326–36.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Hu J, Ma J, Pan J. Spontaneous regeneration of bone after removal of a vascularised fibular bone graft from a mandibular segmental defect: a case report. Br J Oral Maxillofac Surg. 2015;53(7):650–1.

    Article  CAS  PubMed  Google Scholar 

  108. Elbeshir EI. Spontaneous regeneration of the mandibular bone following hemimandibulectomy. Br J Oral Maxillofac Surg. 1990;28(2):128–30.

    Article  CAS  PubMed  Google Scholar 

  109. Khodayari A, Khojasteh A, Kiani M, Nayebi A, Mehrdad L, Vahdatinia M. Spontaneous regeneration of the mandible after hemimandibulectomy: report of a case. J Dent (Tehran). 2011;8(3):152–6.

    CAS  PubMed  Google Scholar 

  110. Matsuda S, Yoshida H, Shimada M, Yoshimura H. Spontaneous regeneration of the mandible following hemimandibulectomy for medication-related osteonecrosis of the jaw: a case report. Medicine (Baltimore). 2020;99(33):e21756.

    Article  PubMed  Google Scholar 

  111. Ogunlewe MO, Akinwande JA, Ladeinde AL, Adeyemo WL. Spontaneous regeneration of whole mandible after total mandibulectomy in a sickle cell patient. J Oral Maxillofac Surg. 2006;64(6):981–4.

    Article  PubMed  Google Scholar 

  112. Zita Gomes R, Paraud Freixas A, Han C-H, Bechara S, Tawil I. Alveolar ridge reconstruction with titanium meshes and simultaneous implant placement: a retrospective, multicenter clinical study. Biomed Res Int. 2016;2016:5126838.

    Article  PubMed  PubMed Central  Google Scholar 

  113. von Arx T, Kurt B. Implant placement and simultaneous peri-implant bone grafting using a micro titanium mesh for graft stabilization. Int J Periodontics Restorative Dent. 1998;18(2):117–27.

    Google Scholar 

  114. Zhang T, Zhang T, Cai X. The application of a newly designed L-shaped titanium mesh for GBR with simultaneous implant placement in the esthetic zone: a retrospective case series study. Clin Implant Dent Relat Res. 2019;21(5):862–72.

    Article  PubMed  Google Scholar 

  115. Kim E-S, Kim J-J, Park E-J. Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material. J Adv Prosthodont. 2010;2(1):7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Khojasteh A, Morad G, Behnia H. Clinical importance of recipient site characteristics for vertical ridge augmentation: a systematic review of literature and proposal of a classification. J Oral Implantol. 2013;39(3):386–98.

    Article  PubMed  Google Scholar 

  117. Daftari TK, Whitesides TE Jr, Heller JG, Goodrich AC, BE MC, Hutton WC. Nicotine on the revascularization of bone graft: an experimental study in rabbits. Spine. 1994;19(8):904.

    Article  CAS  PubMed  Google Scholar 

  118. Negri S, Wang Y, Sono T, Lee S, Hsu GC-Y, Xu J, et al. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med. 2020;9(12):1617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu M, Nakasaki M, Shih Y-RV, Varghese S. Effect of age on biomaterial-mediated in situ bone tissue regeneration. Acta Biomater. 2018;78:329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359(9319):1761–7.

    Article  PubMed  Google Scholar 

  121. Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO. Fracture healing in the elderly patient. Exp Gerontol. 2006;41(11):1080–93.

    Article  PubMed  Google Scholar 

  122. Lu C, Miclau T, Hu D, Hansen E, Tsui K, Puttlitz C, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23(6):1300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5(1):91–116.

    Article  CAS  PubMed  Google Scholar 

  124. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab. 1999;17(3):171–7.

    Article  CAS  PubMed  Google Scholar 

  125. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boroojeni, H.S.H., Gharehdaghi, N., Moghaddasi, S., Khojasteh, A. (2023). In Situ Bone Regeneration in Oral and Maxillofacial Surgery: Definition, Indications, and Manufacturing Considerations. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics